Wu Stephen G, He Lian, Wang Qingzhao, Tang Yinjie J
Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA.
Fine Chemicals & Biocatalysis Research, BASF Corporation, Tarrytown, NY, 10591, USA.
Microb Cell Fact. 2015 Mar 20;14:39. doi: 10.1186/s12934-015-0219-3.
In ancient Chinese philosophy, Yin-Yang describes two contrary forces that are interconnected and interdependent. This concept also holds true in microbial cell factories, where Yin represents energy metabolism in the form of ATP, and Yang represents carbon metabolism. Current biotechnology can effectively edit the microbial genome or introduce novel enzymes to redirect carbon fluxes. On the other hand, microbial metabolism loses significant free energy as heat when converting sugar into ATP; while maintenance energy expenditures further aggravate ATP shortage. The limitation of cell "powerhouse" prevents hosts from achieving high carbon yields and rates. Via an Escherichia coli flux balance analysis model, we further demonstrate the penalty of ATP cost on biofuel synthesis. To ensure cell powerhouse being sufficient in microbial cell factories, we propose five principles: 1. Take advantage of native pathways for product synthesis. 2. Pursue biosynthesis relying only on pathways or genetic parts without significant ATP burden. 3. Combine microbial production with chemical conversions (semi-biosynthesis) to reduce biosynthesis steps. 4. Create "minimal cells" or use non-model microbial hosts with higher energy fitness. 5. Develop a photosynthesis chassis that can utilize light energy and cheap carbon feedstocks. Meanwhile, metabolic flux analysis can be used to quantify both carbon and energy metabolisms. The fluxomics results are essential to evaluate the industrial potential of laboratory strains, avoiding false starts and dead ends during metabolic engineering.
在中国古代哲学中,阴阳描述了两种相互对立但又相互联系、相互依存的力量。这一概念在微生物细胞工厂中同样适用,其中阴代表以ATP形式存在的能量代谢,阳代表碳代谢。当前的生物技术可以有效地编辑微生物基因组或引入新的酶来重新引导碳通量。另一方面,微生物在将糖转化为ATP的过程中会以热量的形式损失大量自由能;而维持能量消耗进一步加剧了ATP的短缺。细胞“动力源”的限制阻碍了宿主实现高碳产量和速率。通过大肠杆菌通量平衡分析模型,我们进一步证明了ATP成本对生物燃料合成的不利影响。为确保微生物细胞工厂中的细胞动力源充足,我们提出五条原则:1. 利用天然途径进行产物合成。2. 仅依靠无显著ATP负担的途径或遗传元件进行生物合成。3. 将微生物生产与化学转化(半生物合成)相结合以减少生物合成步骤。4. 创建“最小细胞”或使用具有更高能量适应性的非模式微生物宿主。5. 开发一种能够利用光能和廉价碳源的光合作用底盘。同时,代谢通量分析可用于量化碳代谢和能量代谢。通量组学结果对于评估实验室菌株的工业潜力至关重要,可避免代谢工程过程中的盲目起步和走入死胡同。