Periasamy Malini, Schafleitner Roland, Muthukalingan Krishnan, Ramasamy Srinivasan
Asian Vegetable Research and Development Center (AVRDC)-The World Vegetable Center, PO Box 42, Shanhua, Tainan 74199, Taiwan; Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India.
Asian Vegetable Research and Development Center (AVRDC)-The World Vegetable Center, PO Box 42, Shanhua, Tainan 74199, Taiwan.
PLoS One. 2015 Apr 20;10(4):e0124057. doi: 10.1371/journal.pone.0124057. eCollection 2015.
This study was undertaken to assess the genetic diversity and host plant races of M. vitrata population in South and Southeast Asia and sub-Saharan Africa. The cytochrome c oxidase subunit 1 (cox1) gene was used to understand the phylogenetic relationship of geographically different M. vitrata population, but previous studies did not include population from Southeast Asia, the probable center of origin for Maruca, and from east Africa. Extensive sampling was done from different host plant species in target countries. Reference populations from Oceania and Latin America were used. An amplicon of 658 bp was produced by polymerase chain reaction, and 64 haplotypes were identified in 686 M. vitrata individuals. Phylogenetic analysis showed no difference among the M. vitrata population from different host plants. However, the results suggested that M. vitrata has formed two putative subspecies (which cannot be differentiated based on morphological characters) in Asia and sub-Saharan Africa, as indicated by the high pairwise FST values (0.44-0.85). The extremely high FST values (≥ 0.93) of Maruca population in Latin America and Oceania compared to Asian and African population seem to indicate a different species. On the continental or larger geographical region basis, the genetic differentiation is significantly correlated with the geographical distance. In addition, two putative species of Maruca, including M. vitrata occur in Australia, Indonesia and Papua New Guinea. The negative Tajima's D and Fu's FS values showed the recent demographic expansion of Maruca population. The haplotype network and Automatic Barcode Gap Discovery analyses confirmed the results of phylogenetic analysis. Thus, this study confirmed the presence of three putative Maruca species, including one in Latin America, one in Oceania (including Indonesia) and M. vitrata in Asia, Africa and Oceania. Hence, the genetic differences in Maruca population should be carefully considered while designing the pest management strategies in different regions.
本研究旨在评估南亚、东南亚和撒哈拉以南非洲地区豆野螟种群的遗传多样性及寄主植物小种。利用细胞色素c氧化酶亚基1(cox1)基因来了解地理上不同的豆野螟种群的系统发育关系,但以往的研究未纳入来自东南亚(豆野螟可能的起源中心)和东非的种群。在目标国家对不同寄主植物物种进行了广泛采样,并使用了来自大洋洲和拉丁美洲的参考种群。通过聚合酶链反应产生了一个658 bp的扩增子,在686个豆野螟个体中鉴定出64个单倍型。系统发育分析表明,来自不同寄主植物的豆野螟种群之间没有差异。然而,结果表明,豆野螟在亚洲和撒哈拉以南非洲形成了两个假定的亚种(无法根据形态特征区分),这由高的成对FST值(0.44 - 0.85)表明。与亚洲和非洲种群相比,拉丁美洲和大洋洲的豆野螟种群极高的FST值(≥ 0.93)似乎表明是一个不同的物种。在大陆或更大的地理区域基础上,遗传分化与地理距离显著相关。此外,包括豆野螟在内的两个假定的豆野螟物种出现在澳大利亚、印度尼西亚和巴布亚新几内亚。负的Tajima's D和Fu's FS值表明豆野螟种群近期经历了种群扩张。单倍型网络和自动条形码间隙发现分析证实了系统发育分析的结果。因此,本研究证实了存在三个假定的豆野螟物种,包括一个在拉丁美洲,一个在大洋洲(包括印度尼西亚)以及在亚洲、非洲和大洋洲的豆野螟。因此,在设计不同地区的害虫管理策略时,应仔细考虑豆野螟种群的遗传差异。