Suppr超能文献

分析增加机械指数和能量沉积对人体肝脏剪切波速度重建的影响。

Analyzing the Impact of Increasing Mechanical Index and Energy Deposition on Shear Wave Speed Reconstruction in Human Liver.

作者信息

Deng Yufeng, Palmeri Mark L, Rouze Ned C, Rosenzweig Stephen J, Abdelmalek Manal F, Nightingale Kathryn R

机构信息

Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.

Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.

出版信息

Ultrasound Med Biol. 2015 Jul;41(7):1948-57. doi: 10.1016/j.ultrasmedbio.2015.02.019. Epub 2015 Apr 18.

Abstract

Shear wave elasticity imaging (SWEI) has found success in liver fibrosis staging. This work evaluates hepatic SWEI measurement success as a function of push pulse energy using two mechanical index (MI) values (1.6 and 2.2) over a range of pulse durations. Shear wave speed (SWS) was measured in the livers of 26 study subjects with known or potential chronic liver diseases. Each measurement consisted of eight SWEI sequences, each with different push energy configurations. The rate of successful SWS estimation was linearly proportional to the push energy. SWEI measurements with higher push energy were successful in patients for whom standard push energy levels failed. The findings also suggest that liver capsule depth could be used prospectively to identify patients who would benefit from elevated output. We conclude that there is clinical benefit to using elevated acoustic output for hepatic SWS measurement in patients with deeper livers.

摘要

剪切波弹性成像(SWEI)在肝纤维化分期方面已取得成功。这项研究评估了在一系列脉冲持续时间内,使用两个机械指数(MI)值(1.6和2.2)时,肝脏SWEI测量成功率与推注脉冲能量的关系。在26名已知或潜在患有慢性肝病的研究对象的肝脏中测量了剪切波速度(SWS)。每次测量由八个SWEI序列组成,每个序列具有不同的推注能量配置。成功估计SWS的比率与推注能量呈线性比例关系。对于标准推注能量水平失败的患者,使用更高推注能量的SWEI测量是成功的。研究结果还表明,肝包膜深度可前瞻性地用于识别那些将从提高输出中受益的患者。我们得出结论,对于肝脏较深的患者,使用提高的声学输出进行肝脏SWS测量具有临床益处。

相似文献

1
Analyzing the Impact of Increasing Mechanical Index and Energy Deposition on Shear Wave Speed Reconstruction in Human Liver.
Ultrasound Med Biol. 2015 Jul;41(7):1948-57. doi: 10.1016/j.ultrasmedbio.2015.02.019. Epub 2015 Apr 18.
2
Improvement of Shear Wave Motion Detection Using Harmonic Imaging in Healthy Human Liver.
Ultrasound Med Biol. 2016 May;42(5):1031-41. doi: 10.1016/j.ultrasmedbio.2015.12.012. Epub 2016 Jan 21.
3
Multi-source and multi-directional shear wave generation with intersecting steered ultrasound push beams.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Apr;62(4):647-62. doi: 10.1109/TUFFC.2014.006805.
4
Shear-wave elasticity imaging of a liver fibrosis mouse model using high-frequency ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Jul;62(7):1295-307. doi: 10.1109/TUFFC.2014.006953.
5
Quantification of liver viscoelasticity with acoustic radiation force: a study of hepatic fibrosis in a rat model.
Ultrasound Med Biol. 2013 Nov;39(11):2091-102. doi: 10.1016/j.ultrasmedbio.2013.05.020. Epub 2013 Aug 27.
6
Assessment of liver viscoelasticity by using shear waves induced by ultrasound radiation force.
Radiology. 2013 Mar;266(3):964-70. doi: 10.1148/radiol.12120837. Epub 2012 Dec 6.
7
What do we know about shear wave dispersion in normal and steatotic livers?
Ultrasound Med Biol. 2015 May;41(5):1481-7. doi: 10.1016/j.ultrasmedbio.2015.01.002. Epub 2015 Feb 24.
8
Quantifying the Impact of Imaging Through Body Walls on Shear Wave Elasticity Measurements.
Ultrasound Med Biol. 2023 Mar;49(3):734-749. doi: 10.1016/j.ultrasmedbio.2022.10.005. Epub 2022 Dec 22.
9
Acoustic radiation force impulse and supersonic shear imaging versus transient elastography for liver fibrosis assessment.
Ultrasound Med Biol. 2013 Nov;39(11):1933-41. doi: 10.1016/j.ultrasmedbio.2013.05.003. Epub 2013 Aug 9.
10
Non-invasive assessment of liver fibrosis in a rat model: shear wave elasticity imaging versus real-time elastography.
Ultrasound Med Biol. 2013 Jul;39(7):1215-22. doi: 10.1016/j.ultrasmedbio.2013.02.013. Epub 2013 Apr 18.

引用本文的文献

1
Quantifying the Impact of Imaging Through Body Walls on Shear Wave Elasticity Measurements.
Ultrasound Med Biol. 2023 Mar;49(3):734-749. doi: 10.1016/j.ultrasmedbio.2022.10.005. Epub 2022 Dec 22.
2
Repeatability of Rotational 3-D Shear Wave Elasticity Imaging Measurements in Skeletal Muscle.
Ultrasound Med Biol. 2023 Mar;49(3):750-760. doi: 10.1016/j.ultrasmedbio.2022.10.012. Epub 2022 Dec 19.
3
Hydrophone Spatial Averaging Artifacts for ARFI Beams from Array Transducers.
IEEE Int Ultrason Symp. 2020;NA:1-4. doi: 10.1109/ius46767.2020.9251717.
4
Spatiotemporal Deconvolution of Hydrophone Response for Linear and Nonlinear Beams-Part I: Theory, Spatial-Averaging Correction Formulas, and Criteria for Sensitive Element Size.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Apr;69(4):1243-1256. doi: 10.1109/TUFFC.2022.3150186. Epub 2022 Mar 30.
5
Liver fibrosis assessment: MR and US elastography.
Abdom Radiol (NY). 2022 Sep;47(9):3037-3050. doi: 10.1007/s00261-021-03269-4. Epub 2021 Oct 23.
6
A review of physical and engineering factors potentially affecting shear wave elastography.
J Med Ultrason (2001). 2021 Oct;48(4):403-414. doi: 10.1007/s10396-021-01127-w. Epub 2021 Aug 28.
7
Shear Wave Elasticity Imaging Using Nondiffractive Bessel Apodized Acoustic Radiation Force.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Dec;68(12):3528-3539. doi: 10.1109/TUFFC.2021.3095614. Epub 2021 Nov 23.
8
On the Relationship between Spatial Coherence and In Situ Pressure for Abdominal Imaging.
Ultrasound Med Biol. 2021 Aug;47(8):2310-2320. doi: 10.1016/j.ultrasmedbio.2021.03.008. Epub 2021 May 11.
9
Quantifying the Effect of Abdominal Body Wall on In Situ Peak Rarefaction Pressure During Diagnostic Ultrasound Imaging.
Ultrasound Med Biol. 2021 Jun;47(6):1548-1558. doi: 10.1016/j.ultrasmedbio.2021.01.028. Epub 2021 Mar 13.
10
Hydrophone Spatial Averaging Correction for Acoustic Exposure Measurements From Arrays-Part II: Validation for ARFI and Pulsed Doppler Waveforms.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Mar;68(3):376-388. doi: 10.1109/TUFFC.2020.3037999. Epub 2021 Feb 25.

本文引用的文献

2
Romanian national guidelines and practical recommendations on liver elastography.
Med Ultrason. 2014 Jun;16(2):123-38. doi: 10.11152/mu.201.3.2066.162.is1sb2.
4
Should the mechanical index be revised for ARFI imaging?
IEEE Int Ultrason Symp. 2012 Oct 7;2012:17-20. doi: 10.1109/ULTSYM.2012.0005.
5
Improved measurement of acoustic output using complex deconvolution of hydrophone sensitivity.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Jan;61(1):62-75. doi: 10.1109/TUFFC.2014.6689776.
6
Harmonic tracking of acoustic radiation force-induced displacements.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Nov;60(11):2347-58. doi: 10.1109/TUFFC.2013.6644738.
8
Characterization of focal liver masses using acoustic radiation force impulse elastography.
World J Gastroenterol. 2013 Jan 14;19(2):219-26. doi: 10.3748/wjg.v19.i2.219.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验