Suppr超能文献

用于天然聚合物同步糖化和发酵的相互关联的种群平衡与控制论模型。

Interlinked population balance and cybernetic models for the simultaneous saccharification and fermentation of natural polymers.

作者信息

Ho Yong Kuen, Doshi Pankaj, Yeoh Hak Koon, Ngoh Gek Cheng

机构信息

Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.

National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.

出版信息

Biotechnol Bioeng. 2015 Oct;112(10):2084-105. doi: 10.1002/bit.25616. Epub 2015 Jun 30.

Abstract

Simultaneous Saccharification and Fermentation (SSF) is a process where microbes have to first excrete extracellular enzymes to break polymeric substrates such as starch or cellulose into edible nutrients, followed by in situ conversion of those nutrients into more valuable metabolites via fermentation. As such, SSF is very attractive as a one-pot synthesis method of biological products. However, due to the co-existence of multiple biochemical steps, modeling SSF faces two major challenges. The first is to capture the successive chain-end and/or random scission of the polymeric substrates over time, which determines the rate of generation of various fermentable substrates. The second is to incorporate the response of microbes, including their preferential substrate utilization, to such a complex broth. Each of the above-mentioned challenges has manifested itself in many related areas, and has been competently but separately attacked with two diametrically different tools, i.e., the Population Balance Modeling (PBM) and the Cybernetic Modeling (CM), respectively. To date, they have yet to be applied in unison on SSF resulting in a general inadequacy or haphazard approaches to examine the dynamics and interactions of depolymerization and fermentation. To overcome this unsatisfactory state of affairs, here, the general linkage between PBM and CM is established to model SSF. A notable feature is the flexible linkage, which allows the individual PBM and CM models to be independently modified to the desired levels of detail. A more general treatment of the secretion of extracellular enzyme is also proposed in the CM model. Through a case study on the growth of a recombinant Saccharomyces cerevisiae capable of excreting a chain-end scission enzyme (glucoamylase) on starch, the interlinked model calibrated using data from the literature (Nakamura et al., Biotechnol. Bioeng. 53:21-25, 1997), captured features not attainable by existing approaches. In particular, the effect of various enzymatic actions on the temporal evolution of the polymer distribution and how the microbes respond to the diverse polymeric environment can be studied through this framework.

摘要

同步糖化发酵(SSF)是这样一个过程:微生物必须首先分泌胞外酶,将淀粉或纤维素等聚合底物分解成可食用的营养物质,然后通过发酵将这些营养物质原位转化为更有价值的代谢产物。因此,作为一种生物产品的一锅法合成方法,同步糖化发酵非常有吸引力。然而,由于存在多个生化步骤,对同步糖化发酵进行建模面临两个主要挑战。第一个挑战是捕捉聚合底物随时间的连续链端断裂和/或随机断裂,这决定了各种可发酵底物的生成速率。第二个挑战是纳入微生物对这种复杂肉汤的反应,包括它们对底物的优先利用。上述每个挑战在许多相关领域都有体现,并且分别用两种截然不同的工具进行了有效但单独的应对,即群体平衡建模(PBM)和控制论建模(CM)。迄今为止,它们尚未统一应用于同步糖化发酵,导致在研究解聚和发酵的动态过程及相互作用时普遍存在不足或方法随意的情况。为了克服这种不尽人意的状况,本文建立了群体平衡建模和控制论建模之间的一般联系,以对同步糖化发酵进行建模。一个显著特点是灵活的联系,它允许分别对群体平衡建模和控制论建模模型进行独立修改,以达到所需的详细程度。在控制论建模模型中还提出了对胞外酶分泌的更一般处理方法。通过对一种能够分泌链端断裂酶(葡糖淀粉酶)的重组酿酒酵母在淀粉上生长的案例研究,使用文献(Nakamura等人,《生物技术与生物工程》53:21 - 25,1997)中的数据校准的相互关联模型捕捉到了现有方法无法实现的特征。特别是,通过这个框架可以研究各种酶促作用对聚合物分布随时间演变的影响,以及微生物如何对不同的聚合物环境做出反应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验