Suppr超能文献

预测非计划转入重症监护病房:一种利用多种临床要素的机器学习方法

Predicting Unplanned Transfers to the Intensive Care Unit: A Machine Learning Approach Leveraging Diverse Clinical Elements.

作者信息

Wellner Ben, Grand Joan, Canzone Elizabeth, Coarr Matt, Brady Patrick W, Simmons Jeffrey, Kirkendall Eric, Dean Nathan, Kleinman Monica, Sylvester Peter

机构信息

The MITRE Corporation, Bedford, MA, United States.

Cincinnati Children's Hospital, Cincinnati, OH, United States.

出版信息

JMIR Med Inform. 2017 Nov 22;5(4):e45. doi: 10.2196/medinform.8680.

Abstract

BACKGROUND

Early warning scores aid in the detection of pediatric clinical deteriorations but include limited data inputs, rarely include data trends over time, and have limited validation.

OBJECTIVE

Machine learning methods that make use of large numbers of predictor variables are now commonplace. This work examines how different types of predictor variables derived from the electronic health record affect the performance of predicting unplanned transfers to the intensive care unit (ICU) at three large children's hospitals.

METHODS

We trained separate models with data from three different institutions from 2011 through 2013 and evaluated models with 2014 data. Cases consisted of patients who transferred from the floor to the ICU and met one or more of 5 different priori defined criteria for suspected unplanned transfers. Controls were patients who were never transferred to the ICU. Predictor variables for the models were derived from vitals, labs, acuity scores, and nursing assessments. Classification models consisted of L1 and L2 regularized logistic regression and neural network models. We evaluated model performance over prediction horizons ranging from 1 to 16 hours.

RESULTS

Across the three institutions, the c-statistic values for our best models were 0.892 (95% CI 0.875-0.904), 0.902 (95% CI 0.880-0.923), and 0.899 (95% CI 0.879-0.919) for the task of identifying unplanned ICU transfer 6 hours before its occurrence and achieved 0.871 (95% CI 0.855-0.888), 0.872 (95% CI 0.850-0.895), and 0.850 (95% CI 0.825-0.875) for a prediction horizon of 16 hours. For our first model at 80% sensitivity, this resulted in a specificity of 80.5% (95% CI 77.4-83.7) and a positive predictive value of 5.2% (95% CI 4.5-6.2).

CONCLUSIONS

Feature-rich models with many predictor variables allow for patient deterioration to be predicted accurately, even up to 16 hours in advance.

摘要

背景

早期预警评分有助于检测儿科临床病情恶化,但数据输入有限,很少包含随时间变化的数据趋势,且验证有限。

目的

利用大量预测变量的机器学习方法如今已很常见。本研究探讨了从电子健康记录中提取的不同类型预测变量如何影响三家大型儿童医院预测非计划转入重症监护病房(ICU)的性能。

方法

我们使用2011年至2013年来自三个不同机构的数据训练了单独的模型,并用2014年的数据评估模型。病例包括从普通病房转入ICU且符合5种不同预先定义的疑似非计划转入标准中的一项或多项的患者。对照为从未转入ICU的患者。模型的预测变量来自生命体征、实验室检查、病情严重程度评分和护理评估。分类模型包括L1和L2正则化逻辑回归以及神经网络模型。我们在1至16小时的预测范围内评估模型性能。

结果

在这三家机构中,我们最佳模型在预测非计划ICU转入发生前6小时的任务中,c统计量值分别为0.892(95%置信区间0.875 - 0.904)、0.902(95%置信区间0.880 - 0.923)和0.899(95%置信区间0.879 - 0.919);在16小时预测范围内,分别达到0.871(95%置信区间0.855 - 0.888)、0.872(95%置信区间0.850 - 0.895)和0.850(95%置信区间0.825 - 0.875)。对于我们的第一个模型,在灵敏度为80%时,特异度为80.5%(95%置信区间77.4 - 83.7),阳性预测值为5.2%(95%置信区间4.5 - 6.2)。

结论

具有许多预测变量的特征丰富模型能够准确预测患者病情恶化,甚至提前16小时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15c1/5719228/4e7616f4e8c3/medinform_v5i4e45_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验