Teich Lisa, Kappe Daniel, Rempel Thomas, Meyer Judith, Schröder Christian, Hütten Andreas
Bielefeld Institute for Applied Materials Research, Computational Materials Science and Engineering, University of Applied Sciences Bielefeld, Wilhelm-Bertelsmann-Str. 10, Bielefeld 33602, Germany.
Center for Spinelectronic Materials and Devices, Department of Physics, Bielefeld University, P.O. 100131, Bielefeld 33501, Germany.
Sensors (Basel). 2015 Apr 20;15(4):9251-64. doi: 10.3390/s150409251.
The formation of magnetic bead or nanoparticle superstructures due to magnetic dipole dipole interactions can be used as configurable matter in order to realize low-cost magnetoresistive sensors with very high GMR-effect amplitudes. Experimentally, this can be realized by immersing magnetic beads or nanoparticles in conductive liquid gels and rearranging them by applying suitable external magnetic fields. After gelatinization of the gel matrix the bead or nanoparticle positions are fixed and the resulting system can be used as a magnetoresistive sensor. In order to optimize such sensor structures we have developed a simulation tool chain that allows us not only to study the structuring process in the liquid state but also to rigorously calculate the magnetoresistive characteristic curves for arbitrary nanoparticle arrangements. As an application, we discuss the role of magnetoresistive sensors in finding answers to molecular recognition.
由于磁偶极-偶极相互作用而形成的磁珠或纳米颗粒超结构可作为可配置物质,以实现具有非常高的巨磁阻效应幅度的低成本磁阻传感器。在实验中,这可以通过将磁珠或纳米颗粒浸入导电液体凝胶中,并通过施加合适的外部磁场对其进行重新排列来实现。在凝胶基质凝胶化后,磁珠或纳米颗粒的位置被固定,所得系统可作为磁阻传感器使用。为了优化此类传感器结构,我们开发了一个模拟工具链,它不仅使我们能够研究液态下的结构化过程,还能严格计算任意纳米颗粒排列的磁阻特性曲线。作为一个应用,我们讨论了磁阻传感器在寻找分子识别答案中的作用。