†School of Chemistry and Chemical Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China.
‡Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
J Am Chem Soc. 2015 May 20;137(19):6279-91. doi: 10.1021/jacs.5b01502. Epub 2015 May 6.
Metal-organic cooperative catalysis (MOCC) has been successfully applied for hydroacylation of olefins with aldehydes via directed C(sp(2))-H functionalization. Most recently, it was reported that an elaborated MOCC system, containing Rh(I) catalyst and 7-azaindoline (L1) cocatalyst, could even catalyze ketone α-alkylation with unactivated olefins via C(sp(3))-H activation. Herein we present a density functional theory study to understand the mechanism of the challenging ketone α-alkylation. The transformation uses IMesRh(I)Cl(L1)(CH2═CH2) as an active catalyst and proceeds via sequential seven steps, including ketone condensation with L1, giving enamine 1b; 1b coordination to Rh(I) active catalyst, generating Rh(I)-1b intermediate; C(sp(2))-H oxidative addition, leading to a Rh(III)-H hydride; olefin migratory insertion into Rh(III)-H bond; reductive elimination, generating Rh(I)-1c(alkylated 1b) intermediate; decoordination of 1c, liberating 1c and regenerating Rh(I) active catalyst; and hydrolysis of 1c, furnishing the final α-alkylation product 1d and regenerating L1. Among the seven steps, reductive elimination is the rate-determining step. The C-H bond preactivation via agostic interaction is crucial for the bond activation. The mechanism rationalizes the experimental puzzles: why only L1 among several candidates performed perfectly, whereas others failed, and why Wilkinson's catalyst commonly used in MOCC systems performed poorly. Based on the established mechanism and stimulated by other relevant experimental reactions, we attempted to enrich MOCC chemistry computationally, exemplifying how to develop new organic catalysts and proposing L7 to be an alternative for L1 and demonstrating the great potential of expanding the hitherto exclusive use of Rh(I)/Rh(III) manifold to Co(0)/Co(II) redox cycling in developing MOCC systems.
金属有机协同催化(MOCC)已成功应用于通过定向 C(sp(2))-H 功能化实现烯烃与醛的氢酰化反应。最近,据报道,一个精心设计的 MOCC 体系,包含 Rh(I)催化剂和 7-氮杂吲哚(L1)共催化剂,甚至可以通过 C(sp(3))-H 活化催化酮的α-烷基化反应。在此,我们进行了密度泛函理论研究,以理解具有挑战性的酮α-烷基化反应的机理。该转化使用 IMesRh(I)Cl(L1)(CH2═CH2)作为活性催化剂,通过包括酮与 L1 缩合、生成烯胺 1b;1b 与 Rh(I)活性催化剂配位、生成 Rh(I)-1b 中间体;C(sp(2))-H 氧化加成,生成 Rh(III)-H 氢化物;烯烃迁移插入 Rh(III)-H 键;还原消除,生成 Rh(I)-1c(烷基化 1b)中间体;1c 去配位,释放 1c 并再生 Rh(I)活性催化剂;以及 1c 的水解,生成最终的α-烷基化产物 1d 和再生 L1。在这七个步骤中,还原消除是速率决定步骤。通过螯合相互作用进行 C-H 键预活化对于键的活化至关重要。该机理解释了实验中的难题:为什么只有 L1 在几个候选物中表现完美,而其他的则不行,以及为什么威尔金森催化剂(Wilkinson's catalyst)通常在 MOCC 体系中表现不佳。基于确立的机理,并受到其他相关实验反应的启发,我们试图在计算上丰富 MOCC 化学,举例说明了如何开发新的有机催化剂,并提出 L7 可以替代 L1,并展示了扩展 Rh(I)/Rh(III) 氧化还原循环在开发 MOCC 体系中目前独家使用的巨大潜力。