Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States.
Acc Chem Res. 2021 Mar 2;54(5):1236-1250. doi: 10.1021/acs.accounts.0c00771. Epub 2021 Feb 3.
By using transition metal catalysts, chemists have altered the "logic of chemical synthesis" by enabling the functionalization of carbon-hydrogen bonds, which have traditionally been considered inert. Within this framework, our laboratory has been fascinated by the potential for aldehyde C-H bond activation. Our approach focused on generating acyl-metal-hydrides by oxidative addition of the formyl C-H bond, which is an elementary step first validated by Tsuji in 1965. In this Account, we review our efforts to overcome limitations in hydroacylation. Initial studies resulted in new variants of hydroacylation and ultimately spurred the development of related transformations (e.g., carboacylation, cycloisomerization, and transfer hydroformylation).Sakai and co-workers demonstrated the first hydroacylation of olefins when they reported that 4-pentenals cyclized to cyclopentanones, using stoichiometric amounts of Wilkinson's catalyst. This discovery sparked significant interest in hydroacylation, especially for the enantioselective and catalytic construction of cyclopentanones. Our research focused on expanding the asymmetric variants to access medium-sized rings (e.g., seven- and eight-membered rings). In addition, we achieved selective intermolecular couplings by incorporating directing groups onto the olefin partner. Along the way, we identified Rh and Co catalysts that transform dienyl aldehydes into a variety of unique carbocycles, such as cyclopentanones, bicyclic ketones, cyclohexenyl aldehydes, and cyclobutanones. Building on the insights gained from olefin hydroacylation, we demonstrated the first highly enantioselective hydroacylation of carbonyls. For example, we demonstrated that ketoaldehydes can cyclize to form lactones with high regio- and enantioselectivity. Following these reports, we reported the first intermolecular example that occurs with high stereocontrol. Ketoamides undergo intermolecular carbonyl hydroacylation to furnish α-acyloxyamides that contain a depsipeptide linkage.Finally, we describe how the key acyl-metal-hydride species can be diverted to achieve a C-C bond-cleaving process. Transfer hydroformylation enables the preparation of olefins from aldehydes by a dehomologation mechanism. Release of ring strain in the olefin acceptor offers a driving force for the isodesmic transfer of CO and H. Mechanistic studies suggest that the counterion serves as a proton-shuttle to enable transfer hydroformylation. Collectively, our studies showcase how transition metal catalysis can transform a common functional group, in this case aldehydes, into structurally distinct motifs. Fine-tuning the coordination sphere of an acyl-metal-hydride species can promote C-C and C-O bond-forming reactions, as well as C-C bond-cleaving processes.
通过使用过渡金属催化剂,化学家改变了“化学合成的逻辑”,使碳氢键的功能化成为可能,而这些键在传统上被认为是惰性的。在这个框架内,我们实验室对醛基 C-H 键的活化潜力产生了兴趣。我们的方法侧重于通过甲酰基 C-H 键的氧化加成生成酰基-金属-氢化物,这是 Tsuji 于 1965 年首次验证的基本步骤。在本报告中,我们回顾了我们克服氢甲酰化限制的努力。最初的研究导致了氢甲酰化的新变体,最终推动了相关转化(例如,碳酰化、环异构化和转移氢甲酰化)的发展。Sakai 和同事们证明了烯烃的第一个氢甲酰化反应,他们报告说,使用 Wilkinson 催化剂的化学计量,4-戊烯醛环化成环戊酮。这一发现激发了人们对氢甲酰化的极大兴趣,特别是对环戊酮的对映选择性和催化构建。我们的研究重点是扩展不对称变体以获得中等大小的环(例如,七元和八元环)。此外,我们通过在烯烃配体上引入导向基团实现了选择性的分子间偶联。在此过程中,我们确定了 Rh 和 Co 催化剂,它们将二烯基醛转化为各种独特的碳环,如环戊酮、双环酮、环己烯醛和环丁酮。在从烯烃氢甲酰化中获得的见解的基础上,我们证明了羰基的第一个高度对映选择性氢甲酰化。例如,我们证明酮醛可以环化成具有高区域和对映选择性的内酯。在这些报告之后,我们报告了第一个具有高立体控制的分子间实例。酮酰胺经历分子间羰基氢甲酰化,生成含有 depsipeptide 键的 α-酰氧基酰胺。最后,我们描述了如何使关键的酰基-金属-氢化物物种偏离轨道以实现 C-C 键断裂过程。转移氢甲酰化通过去同系化机制使烯烃从醛制备。烯烃受体中环张力的释放为 CO 和 H 的等摩尔转移提供了驱动力。机理研究表明,抗衡离子作为质子转移体,以实现转移氢甲酰化。总的来说,我们的研究展示了过渡金属催化如何将常见的官能团(在这种情况下为醛)转化为结构不同的基序。精细调整酰基-金属-氢化物物种的配位球可以促进 C-C 和 C-O 键形成反应以及 C-C 键断裂过程。