IEEE Trans Pattern Anal Mach Intell. 2022 Oct;44(10):6585-6593. doi: 10.1109/TPAMI.2021.3092289. Epub 2022 Sep 14.
In this work, we propose a novel Convolutional Neural Network (CNN) architecture for the joint detection and matching of feature points in images acquired by different sensors using a single forward pass. The resulting feature detector is tightly coupled with the feature descriptor, in contrast to classical approaches (SIFT, etc.), where the detection phase precedes and differs from computing the descriptor. Our approach utilizes two CNN subnetworks, the first being a Siamese CNN and the second, consisting of dual non-weight-sharing CNNs. This allows simultaneous processing and fusion of the joint and disjoint cues in the multimodal image patches. The proposed approach is experimentally shown to outperform contemporary state-of-the-art schemes when applied to multiple datasets of multimodal images. It is also shown to provide repeatable feature points detections across multi-sensor images, outperforming state-of-the-art detectors. To the best of our knowledge, it is the first unified approach for the detection and matching of such images.
在这项工作中,我们提出了一种新颖的卷积神经网络(CNN)架构,用于使用单个正向传递联合检测和匹配来自不同传感器的图像中的特征点。与经典方法(SIFT 等)不同,所提出的特征检测器与特征描述符紧密结合,在经典方法中,检测阶段先于并不同于计算描述符。我们的方法利用了两个 CNN 子网,第一个是 Siamese CNN,第二个由两个非共享权重的 CNN 组成。这允许在多模态图像补丁中同时处理和融合联合和不联合的线索。实验表明,当应用于多个多模态图像数据集时,所提出的方法优于当代最先进的方案。它还表现出能够在多传感器图像中重复检测特征点,优于最先进的检测器。据我们所知,这是首次用于此类图像的检测和匹配的统一方法。