Suppr超能文献

量子光学极限下单个开放等离子体纳米腔中的强光与物质相互作用

Strong Light-Matter Interactions in Single Open Plasmonic Nanocavities at the Quantum Optics Limit.

作者信息

Liu Renming, Zhou Zhang-Kai, Yu Yi-Cong, Zhang Tengwei, Wang Hao, Liu Guanghui, Wei Yuming, Chen Huanjun, Wang Xue-Hua

机构信息

State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China.

School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China.

出版信息

Phys Rev Lett. 2017 Jun 9;118(23):237401. doi: 10.1103/PhysRevLett.118.237401. Epub 2017 Jun 8.

Abstract

Reaching the quantum optics limit of strong light-matter interactions between a single exciton and a plasmon mode is highly desirable, because it opens up possibilities to explore room-temperature quantum devices operating at the single-photon level. However, two challenges severely hinder the realization of this limit: the integration of single-exciton emitters with plasmonic nanostructures and making the coupling strength at the single-exciton level overcome the large damping of the plasmon mode. Here, we demonstrate that these two hindrances can be overcome by attaching individual J aggregates to single cuboid Au@Ag nanorods. In such hybrid nanosystems, both the ultrasmall mode volume of ∼71  nm^{3} and the ultrashort interaction distance of less than 0.9 nm make the coupling coefficient between a single J-aggregate exciton and the cuboid nanorod as high as ∼41.6  meV, enabling strong light-matter interactions to be achieved at the quantum optics limit in single open plasmonic nanocavities.

摘要

实现单激子与等离子体模式之间强光-物质相互作用的量子光学极限是非常可取的,因为这为探索在单光子水平上运行的室温量子器件开辟了可能性。然而,两个挑战严重阻碍了这一极限的实现:单激子发射器与等离子体纳米结构的集成,以及使单激子水平的耦合强度克服等离子体模式的大阻尼。在这里,我们证明通过将单个J聚集体附着到单个长方体Au@Ag纳米棒上可以克服这两个障碍。在这种混合纳米系统中,约71nm³的超小模式体积和小于0.9nm的超短相互作用距离使得单个J聚集体激子与长方体纳米棒之间的耦合系数高达约41.6meV,从而能够在单个开放等离子体纳米腔中实现量子光学极限下的强光-物质相互作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验