Suppr超能文献

用于室温量子相干保护的时空光谱局域模态耦合

Spatio-spectral localized modal coupling for room-temperature quantum coherence protection.

作者信息

Zhou Wen-Jie, Lu Yu-Wei, Liu Jing-Feng, Liu Renming, Ang Lay Kee, Hess Ortwin, Wu Lin

机构信息

Department of Science, Mathematics and Technology (SMT), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore.

Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.

出版信息

Nanophotonics. 2025 Mar 20;14(7):885-898. doi: 10.1515/nanoph-2024-0574. eCollection 2025 Apr.

Abstract

This work aims to advance the room-temperature manipulation of photonic qubits and enhance coherence preservation in and for quantum applications via tailored spatio-spectral localized (SSL) systems. We focus on an innovative all-plasmonic SSL system consisting of a gold bowtie array on a gold substrate. This design produces a high-Q spectral-localized mode through the lattice array, emerging from the collective lattice response of localized surface plasmon resonance (LSPR), particularly the surface lattice resonance (SLR). The SSL system enables tunable modal coupling between the LSPR and SLR, allowing precise alignment with quantum emitters to form quasi-bound states across an energy range of 1.45-1.91 eV. This flexibility allows us to investigate how innovative configurations - such as three-body coupling symmetry and modal-coupling strength - affect coherence protection. These insights pave the way for optimizing SSL systems, setting the stage for significant advancements in nanophotonic qubit manipulation at ambient conditions and the future of photonic quantum systems.

摘要

这项工作旨在推进光子量子比特的室温操控,并通过定制的空间光谱局域化(SSL)系统,增强量子应用中以及针对量子应用的相干性保持。我们专注于一种创新的全等离子体SSL系统,该系统由位于金衬底上的金蝴蝶结阵列组成。这种设计通过晶格阵列产生一种高Q值的光谱局域模式,该模式源于局域表面等离子体共振(LSPR),特别是表面晶格共振(SLR)的集体晶格响应。该SSL系统能够实现LSPR和SLR之间的可调谐模态耦合,从而允许与量子发射体精确对准,以在1.45 - 1.91 eV的能量范围内形成准束缚态。这种灵活性使我们能够研究诸如三体耦合对称性和模态耦合强度等创新配置如何影响相干性保护。这些见解为优化SSL系统铺平了道路,为在环境条件下纳米光子量子比特操控以及光子量子系统的未来取得重大进展奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d90e/11980875/6c8b1cbad087/j_nanoph-2024-0574_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验