State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Campus, Victoria 3010, Australia.
Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Campus, Victoria 3010, Australia.
FEMS Microbiol Rev. 2015 Sep;39(5):729-49. doi: 10.1093/femsre/fuv021. Epub 2015 Apr 30.
The continuous increase of the greenhouse gas nitrous oxide (N2O) in the atmosphere due to increasing anthropogenic nitrogen input in agriculture has become a global concern. In recent years, identification of the microbial assemblages responsible for soil N2O production has substantially advanced with the development of molecular technologies and the discoveries of novel functional guilds and new types of metabolism. However, few practical tools are available to effectively reduce in situ soil N2O flux. Combating the negative impacts of increasing N2O fluxes poses considerable challenges and will be ineffective without successfully incorporating microbially regulated N2O processes into ecosystem modeling and mitigation strategies. Here, we synthesize the latest knowledge of (i) the key microbial pathways regulating N2O production and consumption processes in terrestrial ecosystems and the critical environmental factors influencing their occurrence, and (ii) the relative contributions of major biological pathways to soil N2O emissions by analyzing available natural isotopic signatures of N2O and by using stable isotope enrichment and inhibition techniques. We argue that it is urgently necessary to incorporate microbial traits into biogeochemical ecosystem modeling in order to increase the estimation reliability of N2O emissions. We further propose a molecular methodology oriented framework from gene to ecosystem scales for more robust prediction and mitigation of future N2O emissions.
由于农业中人为氮输入的增加,大气中温室气体氧化亚氮(N2O)的持续增加已成为全球关注的问题。近年来,随着分子技术的发展以及新型功能类群和新型代谢类型的发现,识别与土壤 N2O 产生有关的微生物组合已取得了重大进展。然而,目前几乎没有有效的实用工具可用于原位降低土壤 N2O 通量。如果不能成功地将微生物调控的 N2O 过程纳入生态系统建模和缓解策略中,那么应对不断增加的 N2O 通量的负面影响将面临巨大挑战且效果甚微。在这里,我们综合了最新的知识,包括:(i)调控陆地生态系统中 N2O 产生和消耗过程的关键微生物途径,以及影响这些途径发生的关键环境因素;(ii)通过分析可用的 N2O 天然同位素特征,并利用稳定同位素富集和抑制技术,来评估主要生物途径对土壤 N2O 排放的相对贡献。我们认为,迫切需要将微生物特征纳入生物地球化学生态系统模型中,以提高 N2O 排放的估计可靠性。我们进一步提出了一个从基因到生态系统尺度的分子方法导向框架,用于更稳健地预测和缓解未来的 N2O 排放。