Suppr超能文献

3特斯拉下的速度选择性磁化准备非对比增强脑磁共振血管造影:对B0/B1不均匀性的免疫性改善

Velocity-selective magnetization-prepared non-contrast-enhanced cerebral MR angiography at 3 Tesla: Improved immunity to B0/B1 inhomogeneity.

作者信息

Qin Qin, Shin Taehoon, Schär Michael, Guo Hua, Chen Hanwei, Qiao Ye

机构信息

The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.

出版信息

Magn Reson Med. 2016 Mar;75(3):1232-41. doi: 10.1002/mrm.25764. Epub 2015 May 2.

Abstract

PURPOSE

To develop a Fourier-transform based velocity-selective (VS) pulse train that offers improved robustness to B0/B1 inhomogeneity for non-contrast-enhanced cerebral MR angiography (MRA) at 3 Tesla (T).

METHODS

VS pulse train I and II with different saturation bands are proposed to incorporate paired and phase cycled refocusing pulses. Their sensitivity to B0/B1 inhomogeneity was estimated through simulation and compared with a single refocused VS pulse train. The implementation was compared to standard time of flight (TOF) among eight healthy subjects.

RESULTS

In contrast to single refocused VS pulse train, the simulated VS profiles from proposed pulse trains indicate much improved immunity to field inhomogeneity in the brain at 3T. Successive application of two identical VS pulse trains yields a better suppression of static tissue at the cost of 20 ∼ 30% signal loss within large vessels. Average relative contrast ratios of major cerebral arterial segments applying both pulse train I and II with two preparations are 0.81 ± 0.06 and 0.81 ± 0.05, respectively, significantly higher than 0.67 ± 0.07 of TOF-MRA. VS MRA, in particular, the pulse train II with the narrower saturation band, depicts more small vessels with slower flow.

CONCLUSION

VS magnetization-prepared cerebral MRA was demonstrated among normal subjects on a 3T scanner.

摘要

目的

开发一种基于傅里叶变换的速度选择(VS)脉冲序列,用于3特斯拉(T)非对比增强脑磁共振血管造影(MRA),提高对B0/B1不均匀性的鲁棒性。

方法

提出具有不同饱和带的VS脉冲序列I和II,纳入成对和相位循环的重聚焦脉冲。通过模拟估计它们对B0/B1不均匀性的敏感性,并与单个重聚焦VS脉冲序列进行比较。在8名健康受试者中,将其实现与标准飞行时间(TOF)进行比较。

结果

与单个重聚焦VS脉冲序列相比,所提出脉冲序列的模拟VS轮廓表明在3T时对脑内场不均匀性的免疫性有显著改善。连续应用两个相同的VS脉冲序列可更好地抑制静态组织,但大血管内信号损失20%至30%。两种准备方式下应用脉冲序列I和II时,主要脑动脉段的平均相对对比率分别为0.81±0.06和0.81±0.05,显著高于TOF-MRA的0.67±0.07。VS MRA,特别是具有较窄饱和带的脉冲序列II,描绘了更多流速较慢的小血管。

结论

在3T扫描仪上,正常受试者中证实了VS磁化准备的脑MRA。

相似文献

2
Whole-brain arteriography and venography: Using improved velocity-selective saturation pulse trains.
Magn Reson Med. 2018 Apr;79(4):2014-2023. doi: 10.1002/mrm.26864. Epub 2017 Aug 10.
3
Velocity-selective-inversion prepared arterial spin labeling.
Magn Reson Med. 2016 Oct;76(4):1136-48. doi: 10.1002/mrm.26010. Epub 2015 Oct 28.
4
Reduced B/B sensitivity in velocity-selective inversion arterial spin labeling using adiabatic refocusing pulses.
Magn Reson Med. 2024 Nov;92(5):2091-2100. doi: 10.1002/mrm.30210. Epub 2024 Jul 16.
5
Cerebral blood volume mapping using Fourier-transform-based velocity-selective saturation pulse trains.
Magn Reson Med. 2019 Jun;81(6):3544-3554. doi: 10.1002/mrm.27668. Epub 2019 Feb 8.
6
7
Whole-Neck Non-Contrast-Enhanced MR Angiography Using Velocity Selective Magnetization Preparation.
Tomography. 2022 Dec 29;9(1):60-69. doi: 10.3390/tomography9010006.
8
Off-resonance-robust velocity-selective magnetization preparation for non-contrast-enhanced peripheral MR angiography.
Magn Reson Med. 2013 Nov;70(5):1229-40. doi: 10.1002/mrm.24561. Epub 2012 Nov 28.
10
Non-contrast-enhanced abdominal MRA at 3 T using velocity-selective pulse trains.
Magn Reson Med. 2020 Sep;84(3):1173-1183. doi: 10.1002/mrm.28187. Epub 2020 Feb 4.

引用本文的文献

6
Test-retest reliability of 3D velocity-selective arterial spin labeling for detecting normal variations of cerebral blood flow.
Neuroimage. 2023 May 1;271:120039. doi: 10.1016/j.neuroimage.2023.120039. Epub 2023 Mar 16.
7
Comparison and optimization of pCASL and VSASL for rat thoracolumbar spinal cord MRI at 9.4 T.
Magn Reson Med. 2023 Jun;89(6):2305-2317. doi: 10.1002/mrm.29603. Epub 2023 Feb 6.
8
Whole-Neck Non-Contrast-Enhanced MR Angiography Using Velocity Selective Magnetization Preparation.
Tomography. 2022 Dec 29;9(1):60-69. doi: 10.3390/tomography9010006.
9
Velocity-selective excitation: Principles and applications.
NMR Biomed. 2023 Feb;36(2):e4820. doi: 10.1002/nbm.4820. Epub 2022 Sep 9.
10
Recent Technical Developments in ASL: A Review of the State of the Art.
Magn Reson Med. 2022 Nov;88(5):2021-2042. doi: 10.1002/mrm.29381. Epub 2022 Aug 19.

本文引用的文献

1
Velocity-selective-inversion prepared arterial spin labeling.
Magn Reson Med. 2016 Oct;76(4):1136-48. doi: 10.1002/mrm.26010. Epub 2015 Oct 28.
4
Off-resonance-robust velocity-selective magnetization preparation for non-contrast-enhanced peripheral MR angiography.
Magn Reson Med. 2013 Nov;70(5):1229-40. doi: 10.1002/mrm.24561. Epub 2012 Nov 28.
5
Intracranial artery velocity measurement using 4D PC MRI at 3 T: comparison with transcranial ultrasound techniques and 2D PC MRI.
Neuroradiology. 2013 Mar;55(4):389-98. doi: 10.1007/s00234-012-1103-z. Epub 2012 Nov 10.
6
Non-contrast enhanced MR angiography: physical principles.
J Magn Reson Imaging. 2012 Aug;36(2):286-304. doi: 10.1002/jmri.23641.
7
Non-contrast-enhanced renal and abdominal MR angiography using velocity-selective inversion preparation.
Magn Reson Med. 2013 May;69(5):1268-75. doi: 10.1002/mrm.24356. Epub 2012 Jun 18.
8
Vascular disorders--magnetic resonance angiography: brain vessels.
Neuroimaging Clin N Am. 2012 May;22(2):207-33, x. doi: 10.1016/j.nic.2012.02.006. Epub 2012 Mar 29.
10
Latency relationships between cerebral blood flow velocity and intracranial pressure.
Acta Neurochir Suppl. 2012;114:5-9. doi: 10.1007/978-3-7091-0956-4_2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验