Center for Functional MRI, University of California San Diego, La Jolla, California, USA.
Department of Radiology, University of California San Diego, La Jolla, California, USA.
Magn Reson Med. 2024 Nov;92(5):2091-2100. doi: 10.1002/mrm.30210. Epub 2024 Jul 16.
To mitigate the B/B sensitivity of velocity-selective inversion (VSI) pulse trains for velocity-selective arterial spin labeling (VSASL) by implementing adiabatic refocusing. This approach aims to achieve artifact-free VSI-based perfusion imaging through single-pair label-control subtractions, reducing the need for the currently required four-pair dynamic phase-cycling (DPC) technique when using a velocity-insensitive control.
We introduce a Fourier-transform VSI (FT-VSI) train that incorporates sinc-modulated hard excitation pulses with MLEV-8-modulated adiabatic hyperbolic secant refocusing pairs. We compare performance between this train and the standard composite refocusing train, including with and without DPC, for dual-module VSI VSASL. We evaluate (1) simulated velocity-selective profiles and subtraction fidelity across a broad B/B range, (2) subtraction fidelity in phantoms, and (3) image quality, artifact presence, and gray-matter perfusion heterogeneity (as measured by the spatial coefficient of variation) in healthy human subjects.
Adiabatic refocusing significantly improves FT-VSI robustness to B/B inhomogeneity for a single label-control subtraction. Subtraction fidelity is dramatically improved in both simulation and phantoms compared with composite refocusing without DPC, and is similar compared with DPC methods. In humans, marked artifacts seen with the non-DPC composite refocusing approach are eliminated, corroborated by significantly reduced gray-matter heterogeneity (via lower spatial coefficient of variation values).
A novel VSASL labeling train using adiabatic refocusing pulses for VSI was found to reduce artifacts related to B/B inhomogeneity, thereby providing an alternative to DPC and its associated limitations, which include increased vulnerability to physiological noise and motion, reduced functional MRI applicability, and suboptimal data censoring.
通过实施绝热重聚焦来减轻用于速度选择动脉自旋标记(VSASL)的速度选择反转(VSI)脉冲串对 B/B 的敏感性。这种方法旨在通过单对标签控制减法实现无伪影的基于 VSI 的灌注成像,从而减少使用速度不敏感控制时目前所需的四对动态相循环(DPC)技术的需求。
我们引入了一种傅里叶变换 VSI(FT-VSI)脉冲串,该脉冲串结合了 sinc 调制的硬激励脉冲和 MLEV-8 调制的绝热双曲正割重聚焦对。我们比较了该脉冲串与标准复合重聚焦脉冲串的性能,包括有无 DPC,用于双模块 VSI VSASL。我们评估了(1)在广泛的 B/B 范围内的模拟速度选择剖面和减法保真度,(2)在体模中的减法保真度,以及(3)在健康人体受试者中的图像质量、伪影存在和灰质灌注异质性(以空间变异系数衡量)。
绝热重聚焦显著提高了 FT-VSI 对单对标签控制减法的 B/B 不均匀性的鲁棒性。与没有 DPC 的复合重聚焦相比,在模拟和体模中,减法保真度都得到了显著改善,与 DPC 方法相似。在人类中,与没有 DPC 的复合重聚焦方法相比,明显的伪影得到消除,这与灰质异质性显著降低(通过较低的空间变异系数值)相符。
使用绝热重聚焦脉冲进行 VSI 的新型 VSASL 标记脉冲串被发现可以减少与 B/B 不均匀性相关的伪影,从而提供了一种替代 DPC 及其相关限制的方法,这些限制包括对生理噪声和运动的敏感性增加、功能磁共振成像适用性降低以及数据筛选不理想。