Suppr超能文献

全脑动脉造影和静脉造影:使用改进的速度选择饱和脉冲序列。

Whole-brain arteriography and venography: Using improved velocity-selective saturation pulse trains.

机构信息

The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.

出版信息

Magn Reson Med. 2018 Apr;79(4):2014-2023. doi: 10.1002/mrm.26864. Epub 2017 Aug 10.

Abstract

PURPOSE

To develop velocity-selective (VS) MR angiography (MRA) protocols for arteriography and venography with whole-brain coverage.

METHODS

Tissue suppression using velocity-selective saturation (VSS) pulse trains is sensitive to radiofrequency field (B +) inhomogeneity. To reduce its sensitivity, we replaced the low-flip-angle hard pulses in the VSS pulse train with optimal composite (OCP) pulses. Additionally, new pulse sequences for arteriography and venography were developed by placing spatially selective inversion pulses with a delay to null signals from either venous or arterial blood. The VS MRA techniques were compared to the time-of-flight (TOF) MRA in six healthy subjects and two patients at 3T.

RESULTS

More uniform suppression of stationary tissue was observed when the hard pulses were replaced by OCP pulses in the VSS pulse trains, which improved contrast ratios between blood vessels and tissue background for both arteries (0.87 vs. 0.77) and veins (0.80 vs. 0.59). Both arteriograms and venograms depicted all major cervical and intracranial arteries and veins, respectively. Compared to TOF MRA, VS MRA not only offers larger spatial coverage but also depicts more small vessels. Initial clinical feasibility was shown in two patients with comparisons to TOF protocols.

CONCLUSION

Noncontrast-enhanced whole-brain arteriography and venography can be obtained without losing sensitivity to small vessel detection. Magn Reson Med 79:2014-2023, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

摘要

目的

开发具有全脑覆盖范围的血管造影和静脉造影的速度选择(VS)MR 血管造影(MRA)协议。

方法

使用速度选择饱和(VSS)脉冲序列进行组织抑制对射频场(B +)不均匀性敏感。为了降低其灵敏度,我们用最佳复合(OCP)脉冲替换 VSS 脉冲序列中的低翻转角硬脉冲。此外,通过放置具有延迟以消除静脉或动脉血液信号的空间选择性反转脉冲,为血管造影和静脉造影开发了新的脉冲序列。在 3T 下,将 VS MRA 技术与时间飞跃(TOF)MRA 比较了六名健康受试者和两名患者。

结果

在 VSS 脉冲序列中用 OCP 脉冲替换硬脉冲时,观察到静止组织的抑制更加均匀,这提高了血管和组织背景之间的对比度比值,无论是动脉(0.87 对 0.77)还是静脉(0.80 对 0.59)。动脉造影和静脉造影分别描绘了所有主要的颈内和颅内动脉和静脉。与 TOF MRA 相比,VS MRA 不仅提供了更大的空间覆盖范围,而且还描绘了更多的小血管。在两名患者中与 TOF 方案进行比较,初步显示了临床可行性。

结论

在不降低对小血管检测灵敏度的情况下,可以获得非对比增强的全脑动脉造影和静脉造影。磁共振医学 79:2014-2023,2018。© 2017 国际磁共振学会。

相似文献

1
Whole-brain arteriography and venography: Using improved velocity-selective saturation pulse trains.
Magn Reson Med. 2018 Apr;79(4):2014-2023. doi: 10.1002/mrm.26864. Epub 2017 Aug 10.
3
Non-contrast-enhanced abdominal MRA at 3 T using velocity-selective pulse trains.
Magn Reson Med. 2020 Sep;84(3):1173-1183. doi: 10.1002/mrm.28187. Epub 2020 Feb 4.
4
Optimized 4D time-of-flight MR angiography using saturation pulse.
J Magn Reson Imaging. 2016 Jun;43(6):1320-6. doi: 10.1002/jmri.25118. Epub 2015 Dec 15.
6
Cerebral blood volume mapping using Fourier-transform-based velocity-selective saturation pulse trains.
Magn Reson Med. 2019 Jun;81(6):3544-3554. doi: 10.1002/mrm.27668. Epub 2019 Feb 8.

引用本文的文献

1
Variable-density velocity-selective magnetization preparation for non-contrast-enhanced peripheral MR angiography.
Phys Eng Sci Med. 2024 Dec;47(4):1763-1771. doi: 10.1007/s13246-024-01464-3. Epub 2024 Jul 30.
6
Test-retest reliability of 3D velocity-selective arterial spin labeling for detecting normal variations of cerebral blood flow.
Neuroimage. 2023 May 1;271:120039. doi: 10.1016/j.neuroimage.2023.120039. Epub 2023 Mar 16.
7
Whole-Neck Non-Contrast-Enhanced MR Angiography Using Velocity Selective Magnetization Preparation.
Tomography. 2022 Dec 29;9(1):60-69. doi: 10.3390/tomography9010006.
9
Velocity-selective excitation: Principles and applications.
NMR Biomed. 2023 Feb;36(2):e4820. doi: 10.1002/nbm.4820. Epub 2022 Sep 9.
10
Recent Technical Developments in ASL: A Review of the State of the Art.
Magn Reson Med. 2022 Nov;88(5):2021-2042. doi: 10.1002/mrm.29381. Epub 2022 Aug 19.

本文引用的文献

1
Fast measurement of blood T in the human carotid artery at 3T: Accuracy, precision, and reproducibility.
Magn Reson Med. 2017 Jun;77(6):2296-2302. doi: 10.1002/mrm.26325. Epub 2016 Jul 20.
3
4
Quantitative theory for the longitudinal relaxation time of blood water.
Magn Reson Med. 2016 Jul;76(1):270-81. doi: 10.1002/mrm.25875. Epub 2015 Aug 18.
7
Time-resolved angiography using inflow subtraction (TRAILS).
Magn Reson Med. 2014 Sep;72(3):669-78. doi: 10.1002/mrm.24985. Epub 2013 Oct 24.
9
Off-resonance-robust velocity-selective magnetization preparation for non-contrast-enhanced peripheral MR angiography.
Magn Reson Med. 2013 Nov;70(5):1229-40. doi: 10.1002/mrm.24561. Epub 2012 Nov 28.
10
In vivo blood T(1) measurements at 1.5 T, 3 T, and 7 T.
Magn Reson Med. 2013 Oct;70(4):1082-6. doi: 10.1002/mrm.24550. Epub 2012 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验