Suppr超能文献

基于傅里叶变换的速度选择饱和脉冲序列的脑血容量图。

Cerebral blood volume mapping using Fourier-transform-based velocity-selective saturation pulse trains.

机构信息

The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland.

F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland.

出版信息

Magn Reson Med. 2019 Jun;81(6):3544-3554. doi: 10.1002/mrm.27668. Epub 2019 Feb 8.

Abstract

PURPOSE

Velocity-selective saturation (VSS) pulse trains provide a viable alternative to the spatially selective methods for measuring cerebral blood volume (CBV) by reducing the sensitivity to arterial transit time. This study is to compare the Fourier-transform-based velocity-selective saturation (FT-VSS) pulse trains with the conventional flow-dephasing VSS techniques for CBV quantification.

METHODS

The proposed FT-VSS label and control modules were compared with VSS pulse trains utilizing double refocused hyperbolic tangent (DRHT) and 8-segment B1-insensitive rotation (BIR-8). This was done using both numerical simulations and phantom studies to evaluate their sensitivities to gradient imperfections such as eddy currents. DRHT, BIR-8, and FT-VSS prepared CBV mapping was further compared for velocity-encoding gradients along 3 orthogonal directions in healthy subjects at 3T.

RESULTS

The phantom studies exhibited more consistent immunity to gradient imperfections for the utilized FT-VSS pulse trains. Compared to DRHT and BIR-8, FT-VSS delivered more robust CBV results across the 3 VS encoding directions with significantly reduced artifacts along the superior-inferior direction and improved temporal signal-to-noise ratio (SNR) values. Average CBV values obtained from FT-VSS based sequences were 5.3 mL/100 g for gray matter and 2.3 mL/100 g for white matter, comparable to literature expectations.

CONCLUSION

Absolute CBV quantification utilizing advanced FT-VSS pulse trains had several advantages over the existing approaches using flow-dephasing VSS modules. A greater immunity to gradient imperfections and the concurrent tissue background suppression of FT-VSS pulse trains enabled more robust CBV measurements and higher SNR than the conventional VSS pulse trains.

摘要

目的

速度选择饱和(VSS)脉冲序列通过减少对动脉渡越时间的敏感性,为测量脑血容量(CBV)提供了一种可行的替代空间选择方法。本研究旨在比较基于傅里叶变换的速度选择饱和(FT-VSS)脉冲序列与传统的流动去相位 VSS 技术在 CBV 定量中的应用。

方法

将所提出的 FT-VSS 标记和控制模块与利用双重反转双曲线正切(DRHT)和 8 段 B1 不敏感旋转(BIR-8)的 VSS 脉冲序列进行比较。这是通过数值模拟和体模研究来完成的,以评估它们对梯度不完美(如涡流)的敏感性。在 3T 健康受试者中,进一步比较了 DRHT、BIR-8 和 FT-VSS 制备的 CBV 映射在 3 个正交方向上的流速编码梯度。

结果

体模研究显示,所使用的 FT-VSS 脉冲序列对梯度不完美具有更一致的抗干扰能力。与 DRHT 和 BIR-8 相比,FT-VSS 在 3 个 VS 编码方向上提供了更稳健的 CBV 结果,沿上下方向的伪影显著减少,时间信号噪声比(SNR)值提高。从基于 FT-VSS 的序列获得的平均 CBV 值为灰质 5.3 mL/100 g,白质 2.3 mL/100 g,与文献预期值相当。

结论

利用先进的 FT-VSS 脉冲序列进行绝对 CBV 定量具有优于现有使用流动去相位 VSS 模块的方法的几个优点。FT-VSS 脉冲序列对梯度不完美的更高免疫力以及同时对组织背景的抑制作用,使 CBV 测量更稳健,SNR 更高,优于传统的 VSS 脉冲序列。

相似文献

3
Velocity-selective-inversion prepared arterial spin labeling.速度选择反转准备的动脉自旋标记
Magn Reson Med. 2016 Oct;76(4):1136-48. doi: 10.1002/mrm.26010. Epub 2015 Oct 28.
4
Comparison of velocity-selective arterial spin labeling schemes.速度选择性动脉自旋标记方案的比较。
Magn Reson Med. 2021 Apr;85(4):2027-2039. doi: 10.1002/mrm.28572. Epub 2020 Oct 31.

引用本文的文献

9
Multi-compartmental model of glymphatic clearance of solutes in brain tissue.脑组织中溶质的多室隙清道夫通路模型。
PLoS One. 2023 Mar 7;18(3):e0280501. doi: 10.1371/journal.pone.0280501. eCollection 2023.

本文引用的文献

1
MRI techniques to measure arterial and venous cerebral blood volume.MRI 技术测量动脉和静脉脑血容量。
Neuroimage. 2019 Feb 15;187:17-31. doi: 10.1016/j.neuroimage.2018.02.027. Epub 2018 Feb 16.
6
Velocity-selective-inversion prepared arterial spin labeling.速度选择反转准备的动脉自旋标记
Magn Reson Med. 2016 Oct;76(4):1136-48. doi: 10.1002/mrm.26010. Epub 2015 Oct 28.
9
Intracranial Gadolinium Deposition after Contrast-enhanced MR Imaging.颅内钆沉积与对比增强磁共振成像后。
Radiology. 2015 Jun;275(3):772-82. doi: 10.1148/radiol.15150025. Epub 2015 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验