Suppr超能文献

雷帕霉素哺乳动物靶点(mTOR)标记通过RNA结合蛋白HuD捕获Ca2+/钙调蛋白依赖性蛋白激酶IIα(CaMKIIα)mRNA促进树突分支变异性。

Mammalian Target of Rapamycin (mTOR) Tagging Promotes Dendritic Branch Variability through the Capture of Ca2+/Calmodulin-dependent Protein Kinase II α (CaMKIIα) mRNAs by the RNA-binding Protein HuD.

作者信息

Sosanya Natasha M, Cacheaux Luisa P, Workman Emily R, Niere Farr, Perrone-Bizzozero Nora I, Raab-Graham Kimberly F

机构信息

From the Center for Learning and Memory, Department of Neuroscience, Institute for Cell Biology, and United States Army Institute of Surgical Research, Joint Base San Antonio-Fort Sam, Houston, Texas 78234, and.

From the Center for Learning and Memory, Department of Neuroscience.

出版信息

J Biol Chem. 2015 Jun 26;290(26):16357-71. doi: 10.1074/jbc.M114.599399. Epub 2015 May 5.

Abstract

The fate of a memory, whether stored or forgotten, is determined by the ability of an active or tagged synapse to undergo changes in synaptic efficacy requiring protein synthesis of plasticity-related proteins. A synapse can be tagged, but without the "capture" of plasticity-related proteins, it will not undergo long lasting forms of plasticity (synaptic tagging and capture hypothesis). What the "tag" is and how plasticity-related proteins are captured at tagged synapses are unknown. Ca(2+)/calmodulin-dependent protein kinase II α (CaMKIIα) is critical in learning and memory and is synthesized locally in neuronal dendrites. The mechanistic (mammalian) target of rapamycin (mTOR) is a protein kinase that increases CaMKIIα protein expression; however, the mechanism and site of dendritic expression are unknown. Herein, we show that mTOR activity mediates the branch-specific expression of CaMKIIα, favoring one secondary, daughter branch over the other in a single neuron. mTOR inhibition decreased the dendritic levels of CaMKIIα protein and mRNA by shortening its poly(A) tail. Overexpression of the RNA-stabilizing protein HuD increased CaMKIIα protein levels and preserved its selective expression in one daughter branch over the other when mTOR was inhibited. Unexpectedly, deleting the third RNA recognition motif of HuD, the domain that binds the poly(A) tail, eliminated the branch-specific expression of CaMKIIα when mTOR was active. These results provide a model for one molecular mechanism that may underlie the synaptic tagging and capture hypothesis where mTOR is the tag, preventing deadenylation of CaMKIIα mRNA, whereas HuD captures and promotes its expression in a branch-specific manner.

摘要

一段记忆的命运,无论被存储还是被遗忘,都取决于活跃或被标记的突触改变突触效能的能力,而这种改变需要合成与可塑性相关的蛋白质。一个突触可以被标记,但如果没有“捕获”与可塑性相关的蛋白质,它就不会经历长期的可塑性形式(突触标记和捕获假说)。“标记”是什么以及与可塑性相关的蛋白质如何在被标记的突触处被捕获尚不清楚。钙/钙调蛋白依赖性蛋白激酶IIα(CaMKIIα)在学习和记忆中起关键作用,且在神经元树突中局部合成。雷帕霉素的机制性(哺乳动物)靶点(mTOR)是一种蛋白激酶,可增加CaMKIIα蛋白的表达;然而,其树突表达的机制和位点尚不清楚。在此,我们表明mTOR活性介导CaMKIIα的分支特异性表达,在单个神经元中,一个二级子分支比另一个二级子分支更受青睐。mTOR抑制通过缩短其多聚腺苷酸尾降低了CaMKIIα蛋白和mRNA的树突水平。当mTOR被抑制时,RNA稳定蛋白HuD的过表达增加了CaMKIIα蛋白水平,并保留了其在一个子分支相对于另一个子分支的选择性表达。出乎意料的是,删除HuD的第三个RNA识别基序(即与多聚腺苷酸尾结合的结构域),在mTOR活跃时消除了CaMKIIα的分支特异性表达。这些结果提供了一个分子机制模型,该模型可能是突触标记和捕获假说的基础,其中mTOR是标记,可防止CaMKIIα mRNA的去腺苷酸化,而HuD以分支特异性方式捕获并促进其表达。

相似文献

2
Activity-dependent expression of RNA binding protein HuD and its association with mRNAs in neurons.
RNA Biol. 2008 Jul-Sep;5(3):157-68. doi: 10.4161/rna.5.3.6782. Epub 2008 Jul 14.
3
Dendritic mRNA targeting and translation.
Adv Exp Med Biol. 2012;970:285-305. doi: 10.1007/978-3-7091-0932-8_13.
6
Degradation of high affinity HuD targets releases Kv1.1 mRNA from miR-129 repression by mTORC1.
J Cell Biol. 2013 Jul 8;202(1):53-69. doi: 10.1083/jcb.201212089.
7
A role for dendritic translation of CaMKIIα mRNA in olfactory plasticity.
PLoS One. 2012;7(6):e40133. doi: 10.1371/journal.pone.0040133. Epub 2012 Jun 29.
8
Recruitment of Staufen2 Enhances Dendritic Localization of an Intron-Containing CaMKIIα mRNA.
Cell Rep. 2017 Jul 5;20(1):13-20. doi: 10.1016/j.celrep.2017.06.026.
9
Neuronal RNA-binding protein HuD regulates addiction-related gene expression and behavior.
Genes Brain Behav. 2018 Apr;17(4):e12454. doi: 10.1111/gbb.12454. Epub 2018 Jan 26.

引用本文的文献

1
Mitochondrial-encoded peptide MOTS-c prevents pancreatic islet cell senescence to delay diabetes.
Exp Mol Med. 2025 Aug;57(8):1861-1877. doi: 10.1038/s12276-025-01521-1. Epub 2025 Aug 25.
2
Overabundant endocannabinoids in neurons are detrimental to cognitive function.
bioRxiv. 2024 Sep 17:2024.09.17.613513. doi: 10.1101/2024.09.17.613513.
3
Emerging Roles for the RNA-Binding Protein HuD (ELAVL4) in Nervous System Diseases.
Int J Mol Sci. 2022 Nov 23;23(23):14606. doi: 10.3390/ijms232314606.
4
RNA-binding protein ELAVL4/HuD ameliorates Alzheimer's disease-related molecular changes in human iPSC-derived neurons.
Prog Neurobiol. 2022 Oct;217:102316. doi: 10.1016/j.pneurobio.2022.102316. Epub 2022 Jul 14.
5
Revealing the Molecular Mechanisms of Alzheimer's Disease Based on Network Analysis.
Int J Mol Sci. 2021 Oct 26;22(21):11556. doi: 10.3390/ijms222111556.
6
Autophagy and apoptosis cascade: which is more prominent in neuronal death?
Cell Mol Life Sci. 2021 Dec;78(24):8001-8047. doi: 10.1007/s00018-021-04004-4. Epub 2021 Nov 6.
7
RNA-Binding Protein HuD as a Versatile Factor in Neuronal and Non-Neuronal Systems.
Biology (Basel). 2021 Apr 23;10(5):361. doi: 10.3390/biology10050361.
8
HuD Binds to and Regulates Circular RNAs Derived From Neuronal Development- and Synaptic Plasticity-Associated Genes.
Front Genet. 2020 Aug 5;11:790. doi: 10.3389/fgene.2020.00790. eCollection 2020.
9
Posttranscriptional Gene Regulation of the GABA Receptor to Control Neuronal Inhibition.
Front Mol Neurosci. 2019 Jun 25;12:152. doi: 10.3389/fnmol.2019.00152. eCollection 2019.
10
PCB 95 promotes dendritic growth in primary rat hippocampal neurons via mTOR-dependent mechanisms.
Arch Toxicol. 2018 Oct;92(10):3163-3173. doi: 10.1007/s00204-018-2285-x. Epub 2018 Aug 21.

本文引用的文献

2
Rapamycin reveals an mTOR-independent repression of Kv1.1 expression during epileptogenesis.
Neurobiol Dis. 2015 Jan;73:96-105. doi: 10.1016/j.nbd.2014.09.011. Epub 2014 Sep 28.
3
Selective localization of arc mRNA in dendrites involves activity- and translation-dependent mRNA degradation.
J Neurosci. 2014 Mar 26;34(13):4481-93. doi: 10.1523/JNEUROSCI.4944-13.2014.
4
Reactivation of stalled polyribosomes in synaptic plasticity.
Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16205-10. doi: 10.1073/pnas.1307747110. Epub 2013 Sep 16.
5
Axonal localization of neuritin/CPG15 mRNA in neuronal populations through distinct 5' and 3' UTR elements.
J Neurosci. 2013 Aug 21;33(34):13735-42. doi: 10.1523/JNEUROSCI.0962-13.2013.
6
Degradation of high affinity HuD targets releases Kv1.1 mRNA from miR-129 repression by mTORC1.
J Cell Biol. 2013 Jul 8;202(1):53-69. doi: 10.1083/jcb.201212089.
7
Synaptic amplification by dendritic spines enhances input cooperativity.
Nature. 2012 Nov 22;491(7425):599-602. doi: 10.1038/nature11554. Epub 2012 Oct 28.
8
Bidirectional control of mRNA translation and synaptic plasticity by the cytoplasmic polyadenylation complex.
Mol Cell. 2012 Jul 27;47(2):253-66. doi: 10.1016/j.molcel.2012.05.016. Epub 2012 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验