Greco M Fabiola Del, Minelli Cosetta, Sheehan Nuala A, Thompson John R
Center for Biomedicine, EURAC research, Bolzano, Italy.
Respiratory Epidemiology, Occupational Medicine and Public Health, NHLI, Imperial College, London, U.K.
Stat Med. 2015 Sep 20;34(21):2926-40. doi: 10.1002/sim.6522. Epub 2015 May 7.
Mendelian randomisation (MR) estimates causal effects of modifiable phenotypes on an outcome by using genetic variants as instrumental variables, but its validity relies on the assumption of no pleiotropy, that is, genes influence the outcome only through the given phenotype. Excluding pleiotropy is difficult, but the use of multiple instruments can indirectly address the issue: if all genes represent valid instruments, their MR estimates should vary only by chance. The Sargan test detects pleiotropy when individual phenotype, outcome and genotype data are measured in the same subjects. We propose an alternative approach to be used when only summary genetic data are available or data on gene-phenotype and gene-outcome come from different subjects. The presence of pleiotropy is investigated using the between-instrument heterogeneity Q test (together with the I(2) index) in a meta-analysis of MR Wald estimates, derived separately from each instrument. For a continuous outcome, we evaluate the approach through simulations and illustrate it using published data. For the scenario where all data come from the same subjects, we compare it with the Sargan test. The Q test tends to be conservative in small samples. Its power increases with the degree of pleiotropy and the sample size, as does the precision of the I(2) index, in which case results are similar to those of the Sargan test. In MR studies with large sample sizes based on summary data, the between-instrument Q test represents a useful tool to explore the presence of heterogeneity due to pleiotropy or other causes.
孟德尔随机化(MR)通过使用基因变异作为工具变量来估计可改变的表型对某一结局的因果效应,但其有效性依赖于无多效性的假设,即基因仅通过给定的表型影响结局。排除多效性很困难,但使用多个工具变量可以间接解决这个问题:如果所有基因都代表有效的工具变量,那么它们的MR估计值应该只会因偶然因素而有所不同。当在同一受试者中测量个体表型、结局和基因型数据时,萨根检验可检测多效性。我们提出一种替代方法,用于仅可获得汇总基因数据或基因-表型和基因-结局数据来自不同受试者的情况。在对分别从每个工具变量得出的MR Wald估计值进行的荟萃分析中,使用工具变量间异质性Q检验(连同I²指数)来研究多效性的存在。对于连续性结局,我们通过模拟评估该方法,并使用已发表的数据进行说明。对于所有数据都来自同一受试者的情况,我们将其与萨根检验进行比较。Q检验在小样本中往往较为保守。其检验效能会随着多效性程度和样本量的增加而提高,I²指数的精度也是如此,在这种情况下结果与萨根检验的结果相似。在基于汇总数据的大样本MR研究中,工具变量间Q检验是探索由于多效性或其他原因导致的异质性存在的有用工具。