da Silva Jaime A Teixeira, Dobránszki Judit
, P. O. Box 7, Miki-Cho Post Office, Ikenobe 3011-2, Kagawa-ken, 761-0799, Japan.
Research Institute of Nyíregyháza, University of Debrecen, Nyíregyháza, P.O. Box 12, 4400, Hungary.
Protoplasma. 2016 Mar;253(2):231-48. doi: 10.1007/s00709-015-0820-7. Epub 2015 May 8.
This review provides detailed insight on the effects of magnetic fields on germination, growth, development, and yield of plants focusing on ex vitro growth and development and discussing the possible physiological and biochemical responses. The MFs considered in this review range from the nanoTesla (nT) to geomagnetic levels, up to very strong MFs greater than 15 Tesla (T) and also super-weak MFs (near 0 T). The theoretical bases of the action of MFs on plant growth, which are complex, are not discussed here and thus far, there is limited mathematical background about the action of MFs on plant growth. MFs can positively influence the morphogenesis of several plants which allows them to be used in practical situations. MFs have thus far been shown to modify seed germination and affect seedling growth and development in a wide range of plants, including field, fodder, and industrial crops; cereals and pseudo-cereals; grasses; herbs and medicinal plants; horticultural crops (vegetables, fruits, ornamentals); trees; and model crops. This is important since MFs may constitute a non-residual and non-toxic stimulus. In addition to presenting and summarizing the effects of MFs on plant growth and development, we also provide possible physiological and biochemical explanations for these responses including stress-related responses of plants, explanations based on dia-, para-, and ferromagnetism, oriented movements of substances, and cellular and molecular changes.
本综述详细深入地探讨了磁场对植物萌发、生长、发育和产量的影响,重点关注离体生长和发育,并讨论了可能的生理和生化反应。本综述中考虑的磁场范围从纳特斯拉(nT)到地磁场水平,直至大于15特斯拉(T)的极强磁场以及超弱磁场(接近0 T)。磁场对植物生长作用的理论基础较为复杂,本文不做讨论,而且到目前为止,关于磁场对植物生长作用的数学背景知识有限。磁场可以对多种植物的形态发生产生积极影响,使其能够应用于实际情况。到目前为止,磁场已被证明可以改变多种植物的种子萌发,并影响幼苗的生长和发育,这些植物包括大田作物、饲料作物和经济作物;谷类和准谷类;草类;草本植物和药用植物;园艺作物(蔬菜、水果、观赏植物);树木;以及模式作物。这一点很重要,因为磁场可能构成一种无残留且无毒的刺激因素。除了呈现和总结磁场对植物生长和发育的影响外,我们还为这些反应提供了可能的生理和生化解释,包括植物的应激相关反应、基于抗磁性、顺磁性和铁磁性的解释、物质的定向运动以及细胞和分子变化。