Suppr超能文献

用于同时递送外源性生长因子和肌肉祖细胞的角蛋白水凝胶载体系统。

Keratin hydrogel carrier system for simultaneous delivery of exogenous growth factors and muscle progenitor cells.

作者信息

Tomblyn Seth, Pettit Kneller Elizabeth L, Walker Stephen J, Ellenburg Mary D, Kowalczewski Christine J, Van Dyke Mark, Burnett Luke, Saul Justin M

机构信息

KeraNetics, LLC, Winston-Salem, North Carolina, 27101.

Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, 27157.

出版信息

J Biomed Mater Res B Appl Biomater. 2016 Jul;104(5):864-79. doi: 10.1002/jbm.b.33438. Epub 2015 May 7.

Abstract

Ideal material characteristics for tissue engineering or regenerative medicine approaches to volumetric muscle loss (VML) include the ability to deliver cells, growth factors, and molecules that support tissue formation from a system with a tunable degradation profile. Two different types of human hair-derived keratins were tested as options to fulfill these VML design requirements: (1) oxidatively extracted keratin (keratose) characterized by a lack of covalent crosslinking between cysteine residues, and (2) reductively extracted keratin (kerateine) characterized by disulfide crosslinks. Human skeletal muscle myoblasts cultured on coatings of both types of keratin had increased numbers of multinucleated cells compared to collagen or Matrigel(TM) and adhesion levels greater than collagen. Rheology showed elastic moduli from 10(2) to 10(5) Pa and viscous moduli from 10(1) to 10(4) Pa depending on gel concentration and keratin type. Kerateine and keratose showed differing rates of degradation due to the presence or absence of disulfide crosslinks, which likely contributed to observed differences in release profiles of several growth factors. In vivo testing in a subcutaneous mouse model showed that keratose hydrogels can be used to deliver mouse muscle progenitor cells and growth factors. Histological assessment showed minimal inflammatory responses and an increase in markers of muscle formation. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 864-879, 2016.

摘要

用于治疗大面积肌肉损失(VML)的组织工程或再生医学方法的理想材料特性包括能够从具有可调节降解特性的系统中递送细胞、生长因子和支持组织形成的分子。测试了两种不同类型的人发角蛋白作为满足这些VML设计要求的选择:(1)氧化提取的角蛋白(角蛋白糖),其特征是半胱氨酸残基之间缺乏共价交联;(2)还原提取的角蛋白(角蛋白),其特征是具有二硫键交联。与胶原蛋白或基质胶(Matrigel™)相比,在这两种角蛋白涂层上培养的人骨骼肌成肌细胞的多核细胞数量增加,且黏附水平高于胶原蛋白。流变学显示,根据凝胶浓度和角蛋白类型,弹性模量在10²至10⁵帕斯卡之间,黏性模量在10¹至10⁴帕斯卡之间。由于存在或不存在二硫键交联,角蛋白和角蛋白糖显示出不同的降解速率,这可能导致了几种生长因子释放曲线的差异。在皮下小鼠模型中的体内测试表明,角蛋白糖水凝胶可用于递送小鼠肌肉祖细胞和生长因子。组织学评估显示炎症反应最小,肌肉形成标志物增加。©2015威利期刊公司。《生物医学材料研究杂志》B部分:应用生物材料,104B:864 - 879,2016年。

相似文献

1
Keratin hydrogel carrier system for simultaneous delivery of exogenous growth factors and muscle progenitor cells.
J Biomed Mater Res B Appl Biomater. 2016 Jul;104(5):864-79. doi: 10.1002/jbm.b.33438. Epub 2015 May 7.
2
Alkylation of human hair keratin for tunable hydrogel erosion and drug delivery in tissue engineering applications.
Acta Biomater. 2015 Sep;23:201-213. doi: 10.1016/j.actbio.2015.05.013. Epub 2015 May 18.
3
Tunable Keratin Hydrogels for Controlled Erosion and Growth Factor Delivery.
Biomacromolecules. 2016 Jan 11;17(1):225-36. doi: 10.1021/acs.biomac.5b01328. Epub 2015 Dec 14.
4
Effects of Tunable Keratin Hydrogel Erosion on Recombinant Human Bone Morphogenetic Protein 2 Release, Bioactivity, and Bone Induction.
Tissue Eng Part A. 2018 Nov;24(21-22):1616-1630. doi: 10.1089/ten.TEA.2017.0471. Epub 2018 Sep 6.
5
Keratin Hydrogel Enhances In Vivo Skeletal Muscle Function in a Rat Model of Volumetric Muscle Loss.
Tissue Eng Part A. 2017 Jun;23(11-12):556-571. doi: 10.1089/ten.TEA.2016.0458. Epub 2017 Apr 14.
6
Extrusion 3D printing of keratin protein hydrogels free of exogenous chemical agents.
Biomed Mater. 2022 Jul 22;17(5). doi: 10.1088/1748-605X/ac7f15.
7
Mechanical and biological properties of keratose biomaterials.
Biomaterials. 2011 Nov;32(32):8205-17. doi: 10.1016/j.biomaterials.2011.07.054. Epub 2011 Aug 11.
8
Cell and Growth Factor-Loaded Keratin Hydrogels for Treatment of Volumetric Muscle Loss in a Mouse Model.
Tissue Eng Part A. 2017 Jun;23(11-12):572-584. doi: 10.1089/ten.TEA.2016.0457. Epub 2017 Apr 14.
9
Natural polymeric hydrogel evaluation for skeletal muscle tissue engineering.
J Biomed Mater Res B Appl Biomater. 2018 Feb;106(2):672-679. doi: 10.1002/jbm.b.33859. Epub 2017 Mar 17.
10
Assessment of the Efficacy of an LL-37-Encapsulated Keratin Hydrogel for the Treatment of Full-Thickness Wounds.
ACS Appl Bio Mater. 2023 Jun 19;6(6):2122-2136. doi: 10.1021/acsabm.2c01068. Epub 2023 May 24.

引用本文的文献

1
Hydrogels and nanogels: effectiveness in dermal applications.
Beilstein J Nanotechnol. 2025 Aug 1;16:1216-1233. doi: 10.3762/bjnano.16.90. eCollection 2025.
2
Modifying Naturally Occurring, Nonmammalian-Sourced Biopolymers for Biomedical Applications.
ACS Biomater Sci Eng. 2024 Oct 14;10(10):5915-5938. doi: 10.1021/acsbiomaterials.4c00689. Epub 2024 Sep 11.
4
Advancements and Challenges in Hydrogel Engineering for Regenerative Medicine.
Gels. 2024 Mar 30;10(4):238. doi: 10.3390/gels10040238.
6
Protein-Based Hydrogels and Their Biomedical Applications.
Molecules. 2023 Jun 25;28(13):4988. doi: 10.3390/molecules28134988.
7
Full-thickness dermal wound regeneration using hypoxia preconditioned blood-derived growth factors: A case series.
Organogenesis. 2023 Dec 31;19(1):2234517. doi: 10.1080/15476278.2023.2234517.
9
A Review of Recent Advances in Natural Polymer-Based Scaffolds for Musculoskeletal Tissue Engineering.
Polymers (Basel). 2022 May 20;14(10):2097. doi: 10.3390/polym14102097.
10
Sustainable Applications of Animal Waste Proteins.
Polymers (Basel). 2022 Apr 14;14(8):1601. doi: 10.3390/polym14081601.

本文引用的文献

1
Modular multifunctional poly(ethylene glycol) hydrogels for stem cell differentiation.
Adv Funct Mater. 2013 Feb 5;23(5):575-582. doi: 10.1002/adfm.201201902. Epub 2012 Sep 13.
2
Reduction of ectopic bone growth in critically-sized rat mandible defects by delivery of rhBMP-2 from kerateine biomaterials.
Biomaterials. 2014 Mar;35(10):3220-8. doi: 10.1016/j.biomaterials.2013.12.087. Epub 2014 Jan 15.
3
Complications with the use of bone morphogenetic protein 2 (BMP-2) in spine surgery.
Spine J. 2014 Mar 1;14(3):552-9. doi: 10.1016/j.spinee.2013.08.060. Epub 2014 Jan 8.
4
Stable corneal regeneration four years after implantation of a cell-free recombinant human collagen scaffold.
Biomaterials. 2014 Mar;35(8):2420-7. doi: 10.1016/j.biomaterials.2013.11.079. Epub 2013 Dec 25.
5
Autologous minced muscle grafts: a tissue engineering therapy for the volumetric loss of skeletal muscle.
Am J Physiol Cell Physiol. 2013 Oct 1;305(7):C761-75. doi: 10.1152/ajpcell.00189.2013. Epub 2013 Jul 24.
6
In vivo acute and humoral response to three-dimensional porous soy protein scaffolds.
Acta Biomater. 2013 Nov;9(11):8983-90. doi: 10.1016/j.actbio.2013.07.005. Epub 2013 Jul 12.
7
Bio-thermoplastics from grafted chicken feathers for potential biomedical applications.
Colloids Surf B Biointerfaces. 2013 Oct 1;110:51-8. doi: 10.1016/j.colsurfb.2013.04.019. Epub 2013 Apr 28.
9
Human cartilage repair with a photoreactive adhesive-hydrogel composite.
Sci Transl Med. 2013 Jan 9;5(167):167ra6. doi: 10.1126/scitranslmed.3004838.
10
Bone regeneration with BMP-2 delivered from keratose scaffolds.
Biomaterials. 2013 Feb;34(6):1644-56. doi: 10.1016/j.biomaterials.2012.11.002. Epub 2012 Dec 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验