Suppr超能文献

通过非天然盐桥的静电引导使肽与PDZ结构域结合。

Peptide Binding to a PDZ Domain by Electrostatic Steering via Nonnative Salt Bridges.

作者信息

Blöchliger Nicolas, Xu Min, Caflisch Amedeo

机构信息

Department of Biochemistry, University of Zurich, Zurich, Switzerland.

Department of Biochemistry, University of Zurich, Zurich, Switzerland.

出版信息

Biophys J. 2015 May 5;108(9):2362-70. doi: 10.1016/j.bpj.2015.03.038.

Abstract

We have captured the binding of a peptide to a PDZ domain by unbiased molecular dynamics simulations. Analysis of the trajectories reveals on-pathway encounter complex formation, which is driven by electrostatic interactions between negatively charged carboxylate groups in the peptide and positively charged side chains surrounding the binding site. In contrast, the final stereospecific complex, which matches the crystal structure, features completely different interactions, namely the burial of the hydrophobic side chain of the peptide C-terminal residue and backbone hydrogen bonds. The simulations show that nonnative salt bridges stabilize kinetically the encounter complex during binding. Unbinding follows the inverse sequence of events with the same nonnative salt bridges in the encounter complex. Thus, in contrast to protein folding, which is driven by native interactions, the binding of charged peptides can be steered by nonnative interactions, which might be a general mechanism, e.g., in the recognition of histone tails by bromodomains.

摘要

我们通过无偏分子动力学模拟捕获了一种肽与PDZ结构域的结合。对轨迹的分析揭示了在结合途径中遭遇复合物的形成,这是由肽中带负电荷的羧基与围绕结合位点的带正电荷的侧链之间的静电相互作用驱动的。相比之下,与晶体结构匹配的最终立体特异性复合物具有完全不同的相互作用,即肽C末端残基的疏水侧链的埋藏和主链氢键。模拟表明,非天然盐桥在结合过程中动力学上稳定了遭遇复合物。解离遵循相反的事件顺序,在遭遇复合物中具有相同的非天然盐桥。因此,与由天然相互作用驱动的蛋白质折叠不同,带电荷肽的结合可以由非天然相互作用引导,这可能是一种普遍机制,例如,在溴结构域识别组蛋白尾巴的过程中。

相似文献

1
Peptide Binding to a PDZ Domain by Electrostatic Steering via Nonnative Salt Bridges.
Biophys J. 2015 May 5;108(9):2362-70. doi: 10.1016/j.bpj.2015.03.038.
2
Influence of Glu/Arg, Asp/Arg, and Glu/Lys Salt Bridges on α-Helical Stability and Folding Kinetics.
Biophys J. 2016 Jun 7;110(11):2328-2341. doi: 10.1016/j.bpj.2016.04.015.
3
Structure-based optimization of salt-bridge network across the complex interface of PTPN4 PDZ domain with its peptide ligands in neuroglioma.
Comput Biol Chem. 2017 Feb;66:63-68. doi: 10.1016/j.compbiolchem.2016.11.005. Epub 2016 Nov 30.
8
Examination of the folding of a short alanine-based helical peptide with salt bridges using molecular dynamics simulation.
J Phys Chem B. 2007 Apr 5;111(13):3508-14. doi: 10.1021/jp067637a. Epub 2007 Mar 15.
9
Role of backbone hydration and salt-bridge formation in stability of alpha-helix in solution.
Biophys J. 2003 Nov;85(5):3187-93. doi: 10.1016/S0006-3495(03)74736-5.
10
How a highly acidic SH3 domain folds in the absence of its charged peptide target.
Protein Sci. 2023 May;32(5):e4635. doi: 10.1002/pro.4635.

引用本文的文献

1
Synaptic Physiology Depends on Electrical Forces and Liquid-Liquid Phase Separation.
Rev Physiol Biochem Pharmacol. 2025;187:339-359. doi: 10.1007/978-3-031-68827-0_17.
2
On the specificity of the recognition of m6A-RNA by YTH reader domains.
J Biol Chem. 2024 Dec;300(12):107998. doi: 10.1016/j.jbc.2024.107998. Epub 2024 Nov 17.
4
On the possibility of the existence of orienting hydrodynamic steering effects in the kinetics of receptor-ligand association.
Eur Biophys J. 2023 Oct;52(6-7):559-568. doi: 10.1007/s00249-023-01653-0. Epub 2023 May 12.
5
A dynamical view of protein-protein complexes: Studies by molecular dynamics simulations.
Front Mol Biosci. 2022 Oct 6;9:970109. doi: 10.3389/fmolb.2022.970109. eCollection 2022.
7
Searching for Hydrodynamic Orienting Effects in the Association of Tri--acetylglucosamine with Hen Egg-White Lysozyme.
J Phys Chem B. 2021 Sep 30;125(38):10701-10709. doi: 10.1021/acs.jpcb.1c06762. Epub 2021 Sep 21.
8
Markov State Models to Elucidate Ligand Binding Mechanism.
Methods Mol Biol. 2021;2266:239-259. doi: 10.1007/978-1-0716-1209-5_14.
9
A disordered encounter complex is central to the yeast Abp1p SH3 domain binding pathway.
PLoS Comput Biol. 2020 Sep 14;16(9):e1007815. doi: 10.1371/journal.pcbi.1007815. eCollection 2020 Sep.
10
Protein-Protein Binding as a Two-Step Mechanism: Preselection of Encounter Poses during the Binding of BPTI and Trypsin.
Biophys J. 2020 Aug 4;119(3):652-666. doi: 10.1016/j.bpj.2020.06.032. Epub 2020 Jul 10.

本文引用的文献

1
Insights into the Binding of Intrinsically Disordered Proteins from Molecular Dynamics Simulation.
Wiley Interdiscip Rev Comput Mol Sci. 2014 May-Jun;4(3):182-198. doi: 10.1002/wcms.1167. Epub 2013 Aug 27.
2
Protein Folding: A Perspective from Theory and Experiment.
Angew Chem Int Ed Engl. 1998 Apr 20;37(7):868-893. doi: 10.1002/(SICI)1521-3773(19980420)37:7<868::AID-ANIE868>3.0.CO;2-H.
3
Visualizing the Induced Binding of SH2-Phosphopeptide.
J Chem Theory Comput. 2012 Apr 10;8(4):1171-5. doi: 10.1021/ct300003f. Epub 2012 Mar 15.
4
Efficient Construction of Mesostate Networks from Molecular Dynamics Trajectories.
J Chem Theory Comput. 2012 Mar 13;8(3):1108-20. doi: 10.1021/ct200801b. Epub 2012 Feb 10.
5
Mechanism and Kinetics of Acetyl-Lysine Binding to Bromodomains.
J Chem Theory Comput. 2013 Sep 10;9(9):4225-32. doi: 10.1021/ct400361k. Epub 2013 Aug 7.
6
Fep1d: a script for the analysis of reaction coordinates.
J Comput Chem. 2015 May 5;36(12):878-82. doi: 10.1002/jcc.23868. Epub 2015 Feb 25.
7
Evolutionary conserved Tyr169 stabilizes the β2-α2 loop of the prion protein.
J Am Chem Soc. 2015 Mar 4;137(8):2948-57. doi: 10.1021/ja511568m. Epub 2015 Feb 20.
8
Theoretical perspectives on nonnative interactions and intrinsic disorder in protein folding and binding.
Curr Opin Struct Biol. 2015 Feb;30:32-42. doi: 10.1016/j.sbi.2014.12.002. Epub 2014 Dec 24.
9
Long-range conformational transition of a photoswitchable allosteric protein: molecular dynamics simulation study.
J Phys Chem B. 2014 Nov 26;118(47):13468-76. doi: 10.1021/jp506873y. Epub 2014 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验