Suppr超能文献

高通量微生物反应器系统中甲烷营养菌生长及聚(3-羟基丁酸酯)生产的优化

Optimization of Methanotrophic Growth and Production of Poly(3-Hydroxybutyrate) in a High-Throughput Microbioreactor System.

作者信息

Sundstrom Eric R, Criddle Craig S

机构信息

Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA

Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA.

出版信息

Appl Environ Microbiol. 2015 Jul;81(14):4767-73. doi: 10.1128/AEM.00025-15. Epub 2015 May 8.

Abstract

Production of poly(3-hydroxybutyrate) (P3HB) from methane has economic and environmental advantages over production by agricultural feedstock. Identification of high-productivity strains and optimal growth conditions is critical to efficient conversion of methane to polymer. Current culture conditions, including serum bottles, shake flasks, and agar plates, are labor-intensive and therefore insufficient for systematic screening and isolation. Gas chromatography, the standard method for analysis of P3HB content in bacterial biomass, is also incompatible with high-throughput screening. Growth in aerated microtiter plates coupled with a 96-well Nile red flow-cytometric assay creates an integrated microbioreactor system for high-throughput growth and analysis of P3HB-producing methanotrophic cultures, eliminating the need for individual manipulation of experimental replicates. This system was tested in practice to conduct medium optimization for P3HB production in pure cultures of Methylocystis parvus OBBP. Optimization gave insight into unexpected interactions: for example, low calcium concentrations significantly enhanced P3HB production under nitrogen-limited conditions. Optimization of calcium and copper concentrations in the growth medium increased final P3HB content from 18.1% to 49.4% and P3HB concentration from 0.69 g/liter to 3.43 g/liter while reducing doubling time from 10.6 h to 8.6 h. The ability to culture and analyze thousands of replicates with high mass transfer in completely mixed culture promises to streamline medium optimization and allow the detection and isolation of highly productive strains. Applications for this system are numerous, encompassing analysis of biofuels and other lipid inclusions, as well as analysis of heterotrophic and photosynthetic systems.

摘要

与利用农业原料生产聚(3-羟基丁酸酯)(P3HB)相比,利用甲烷生产具有经济和环境优势。鉴定高产菌株和最佳生长条件对于将甲烷高效转化为聚合物至关重要。目前的培养条件,包括血清瓶、摇瓶和琼脂平板,劳动强度大,因此不足以进行系统的筛选和分离。气相色谱法是分析细菌生物质中P3HB含量的标准方法,也与高通量筛选不兼容。在通气的微量滴定板中生长并结合96孔尼罗红流式细胞术测定法,创建了一个用于高通量生长和分析产P3HB的甲烷营养培养物的集成微生物反应器系统,无需对实验重复进行单独操作。该系统在实践中进行了测试,以对嗜甲基孢囊菌OBBP纯培养物中P3HB的生产进行培养基优化。优化揭示了意想不到的相互作用:例如,在氮限制条件下,低钙浓度显著提高了P3HB的产量。优化生长培养基中的钙和铜浓度,使最终P3HB含量从18.1%提高到49.4%,P3HB浓度从0.69克/升提高到3.43克/升,同时将倍增时间从10.6小时缩短到8.6小时。在完全混合培养中以高传质培养和分析数千个重复样本的能力有望简化培养基优化,并允许检测和分离高产菌株。该系统的应用广泛,包括生物燃料和其他脂质内含物的分析,以及异养和光合系统的分析。

相似文献

1
Optimization of Methanotrophic Growth and Production of Poly(3-Hydroxybutyrate) in a High-Throughput Microbioreactor System.
Appl Environ Microbiol. 2015 Jul;81(14):4767-73. doi: 10.1128/AEM.00025-15. Epub 2015 May 8.
2
Potassium deficiency results in accumulation of ultra-high molecular weight poly-beta-hydroxybutyrate in a methane-utilizing mixed culture.
J Appl Microbiol. 2008 Oct;105(4):1054-61. doi: 10.1111/j.1365-2672.2008.03831.x. Epub 2008 Apr 16.
3
Stoichiometry and kinetics of the PHB-producing Type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP.
Bioresour Technol. 2013 Mar;132:71-7. doi: 10.1016/j.biortech.2012.12.129. Epub 2013 Jan 3.
5
6
Poly-3-hydroxybutyrate metabolism in the type II methanotroph Methylocystis parvus OBBP.
Appl Environ Microbiol. 2011 Sep;77(17):6012-9. doi: 10.1128/AEM.00509-11. Epub 2011 Jul 1.
7
9
Enrichments of methanotrophic-heterotrophic cultures with high poly-β-hydroxybutyrate (PHB) accumulation capacities.
J Environ Sci (China). 2018 Mar;65:133-143. doi: 10.1016/j.jes.2017.03.016. Epub 2017 Mar 28.

引用本文的文献

1
Enhancing D-lactic acid production from methane through metabolic engineering of Methylomonas sp. DH-1.
Microb Cell Fact. 2025 Mar 25;24(1):70. doi: 10.1186/s12934-025-02695-z.
2
Recent trends of biotechnological production of polyhydroxyalkanoates from C1 carbon sources.
Front Bioeng Biotechnol. 2023 Jan 6;10:907500. doi: 10.3389/fbioe.2022.907500. eCollection 2022.
3
Biological conversion of methane to polyhydroxyalkanoates: Current advances, challenges, and perspectives.
Environ Sci Ecotechnol. 2020 Apr 24;2:100029. doi: 10.1016/j.ese.2020.100029. eCollection 2020 Apr.
4
Rational engineering of natural polyhydroxyalkanoates producing microorganisms for improved synthesis and recovery.
Microb Biotechnol. 2023 Feb;16(2):262-285. doi: 10.1111/1751-7915.14109. Epub 2022 Jul 6.
5
Delineating the Drivers and Functionality of Methanogenic Niches within an Arid Landfill.
Appl Environ Microbiol. 2022 May 10;88(9):e0243821. doi: 10.1128/aem.02438-21. Epub 2022 Apr 11.
7
Development of a defined medium for using urea as nitrogen source.
3 Biotech. 2021 Sep;11(9):405. doi: 10.1007/s13205-021-02959-6. Epub 2021 Aug 10.
9
Hydrogen Oxidation Influences Glycogen Accumulation in a Verrucomicrobial Methanotroph.
Front Microbiol. 2019 Aug 16;10:1873. doi: 10.3389/fmicb.2019.01873. eCollection 2019.

本文引用的文献

1
Cradle-to-gate life cycle assessment for a cradle-to-cradle cycle: biogas-to-bioplastic (and back).
Environ Sci Technol. 2012 Sep 18;46(18):9822-9. doi: 10.1021/es204541w. Epub 2012 Sep 6.
2
Poly-3-hydroxybutyrate metabolism in the type II methanotroph Methylocystis parvus OBBP.
Appl Environ Microbiol. 2011 Sep;77(17):6012-9. doi: 10.1128/AEM.00509-11. Epub 2011 Jul 1.
3
Distribution and selection of poly-3-hydroxybutyrate production capacity in methanotrophic proteobacteria.
Microb Ecol. 2011 Oct;62(3):564-73. doi: 10.1007/s00248-011-9873-0. Epub 2011 May 19.
6
Ammonia cometabolism and product inhibition vary considerably among species of methanotrophic bacteria.
FEMS Microbiol Lett. 2009 Aug;297(1):131-6. doi: 10.1111/j.1574-6968.2009.01674.x. Epub 2009 Jun 3.
7
A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae.
J Microbiol Methods. 2009 Apr;77(1):41-7. doi: 10.1016/j.mimet.2009.01.001. Epub 2009 Jan 6.
8
Potassium deficiency results in accumulation of ultra-high molecular weight poly-beta-hydroxybutyrate in a methane-utilizing mixed culture.
J Appl Microbiol. 2008 Oct;105(4):1054-61. doi: 10.1111/j.1365-2672.2008.03831.x. Epub 2008 Apr 16.
10
Miniature bioreactors: current practices and future opportunities.
Microb Cell Fact. 2006 May 25;5:21. doi: 10.1186/1475-2859-5-21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验