Roth Eric D, Roth Tania L, Money Kelli M, SenGupta Sonda, Eason Dawn E, Sweatt J David
Department of Psychological and Brian Sciences, University of Delaware, Newark, DE 19716 ; Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, 35294.
Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, 35294.
Neuroepigenetics. 2015 Apr 1;2:1-8. doi: 10.1016/j.nepig.2015.03.001.
Epigenetic mechanisms including altered DNA methylation are critical for altered gene transcription subserving synaptic plasticity and the retention of learned behavior. Here we tested the idea that one role for activity-dependent altered DNA methylation is stabilization of cognition-associated hippocampal place cell firing in response to novel place learning. We observed that a behavioral protocol (spatial exploration of a novel environment) known to induce hippocampal place cell remapping resulted in alterations of hippocampal DNA methylation. Further studies using neurophysiological single unit recordings revealed that pharmacological manipulations of DNA methylation decreased long-term but not short-term place field stability. Together our data highlight a role for DNA methylation in regulating neurophysiological spatial representation and memory formation.
包括DNA甲基化改变在内的表观遗传机制对于基因转录的改变至关重要,这些改变有助于突触可塑性和学习行为的保留。在这里,我们测试了这样一种观点,即活动依赖的DNA甲基化改变的一个作用是稳定与认知相关的海马位置细胞放电,以响应新的位置学习。我们观察到,一种已知会诱导海马位置细胞重新映射的行为方案(对新环境的空间探索)导致了海马DNA甲基化的改变。使用神经生理学单单元记录的进一步研究表明,DNA甲基化的药理学操作降低了长期而非短期的位置场稳定性。我们的数据共同强调了DNA甲基化在调节神经生理空间表征和记忆形成中的作用。