Suppr超能文献

磁共振成像中背景实质强化、纤维腺体量的定性评估以及乳腺X线密度与乳腺癌风险相关吗?

Are Qualitative Assessments of Background Parenchymal Enhancement, Amount of Fibroglandular Tissue on MR Images, and Mammographic Density Associated with Breast Cancer Risk?

作者信息

Dontchos Brian N, Rahbar Habib, Partridge Savannah C, Korde Larissa A, Lam Diana L, Scheel John R, Peacock Sue, Lehman Constance D

机构信息

From the Department of Radiology, Breast Imaging Section (B.N.D., H.R., S.C.P., D.L.L., J.R.S., S.P., C.D.L.), and Department of Medicine, Division of Oncology (L.A.K.), University of Washington School of Medicine, Seattle Cancer Care Alliance, 825 Eastlake Ave E, Room G2-600, PO Box 19023, Seattle, WA 98109-1023.

出版信息

Radiology. 2015 Aug;276(2):371-80. doi: 10.1148/radiol.2015142304. Epub 2015 May 12.

Abstract

PURPOSE

To investigate whether qualitative magnetic resonance (MR) imaging assessments of background parenchymal enhancement (BPE), amount of fibroglandular tissue (FGT), and mammographic density are associated with risk of developing breast cancer in women who are at high risk.

MATERIALS AND METHODS

In this institutional review board-approved HIPAA-compliant retrospective study, all screening breast MR images obtained from January 2006 to December 2011 in women aged 18 years or older and at high risk for but without a history of breast cancer were identified. Women in whom breast cancer was diagnosed after index MR imaging comprised the cancer cohort, and one-to-one matching (age and BRCA status) of each woman with breast cancer to a control subject was performed by using MR images obtained in women who did not develop breast cancer with follow-up time maximized. Amount of BPE, BPE pattern (peripheral vs central), amount of FGT at MR imaging, and mammographic density were assessed on index images. Imaging features were compared between cancer and control cohorts by using conditional logistic regression.

RESULTS

Twenty-three women at high risk (mean age, 47 years ± 10 [standard deviation]; six women had BRCA mutations) with no history of breast cancer underwent screening breast MR imaging; in these women, a diagnosis of breast cancer (invasive, n = 12; in situ, n = 11) was made during the follow-up interval. Women with mild, moderate, or marked BPE were nine times more likely to receive a diagnosis of breast cancer during the follow-up interval than were those with minimal BPE (P = .007; odds ratio = 9.0; 95% confidence interval: 1.1, 71.0). BPE pattern, MR imaging amount of FGT, and mammographic density were not significantly different between the cohorts (P = .5, P = .5, and P = .4, respectively).

CONCLUSION

Greater BPE was associated with a higher probability of developing breast cancer in women at high risk for cancer and warrants further study.

摘要

目的

探讨背景实质强化(BPE)、纤维腺组织(FGT)量以及乳腺X线摄影密度的定性磁共振(MR)成像评估是否与高危女性患乳腺癌的风险相关。

材料与方法

在这项经机构审查委员会批准且符合HIPAA规定的回顾性研究中,确定了2006年1月至2011年12月期间为18岁及以上且患乳腺癌风险高但无乳腺癌病史的女性所进行的所有乳腺MR筛查图像。在索引MR成像后被诊断为乳腺癌的女性组成癌症队列,并通过使用未患乳腺癌且随访时间最长的女性的MR图像,将每名乳腺癌女性与一名对照对象进行一对一匹配(年龄和BRCA状态)。在索引图像上评估BPE量、BPE模式(周边型与中央型)、MR成像时的FGT量以及乳腺X线摄影密度。通过条件逻辑回归比较癌症队列和对照队列之间的成像特征。

结果

23名患乳腺癌风险高(平均年龄47岁±10[标准差];6名女性有BRCA突变)且无乳腺癌病史的女性接受了乳腺MR筛查成像;在这些女性中,随访期间诊断出乳腺癌(浸润性,n = 12;原位癌,n = 11)。轻度、中度或显著BPE的女性在随访期间被诊断为乳腺癌的可能性是最小BPE女性的9倍(P = 0.007;比值比 = 9.0;95%置信区间:1.1,71.0)。队列之间的BPE模式、MR成像的FGT量和乳腺X线摄影密度无显著差异(分别为P = 0.5、P = 0.5和P = 0.4)。

结论

在癌症高危女性中,较高的BPE与患乳腺癌的较高概率相关,值得进一步研究。

相似文献

引用本文的文献

1
Relationship between breast tissue involution and breast cancer.乳腺组织退化与乳腺癌之间的关系。
Front Oncol. 2025 Apr 7;15:1420350. doi: 10.3389/fonc.2025.1420350. eCollection 2025.
3
Breast MRI to Screen Women With Extremely Dense Breasts.乳腺磁共振成像用于筛查乳腺极度致密的女性。
J Magn Reson Imaging. 2025 Jul;62(1):58-72. doi: 10.1002/jmri.29716. Epub 2025 Jan 24.
6
Early Detection of Breast Cancer in MRI Using AI.利用人工智能在磁共振成像中早期检测乳腺癌
Acad Radiol. 2025 Mar;32(3):1218-1225. doi: 10.1016/j.acra.2024.10.014. Epub 2024 Oct 30.

本文引用的文献

1
TLRs: linking inflammation and breast cancer.Toll样受体:连接炎症与乳腺癌
Cell Signal. 2014 Nov;26(11):2350-7. doi: 10.1016/j.cellsig.2014.07.035. Epub 2014 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验