Sun Xuming, Stephens Lisa, DuBose Thomas D, Petrovic Snezana
Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina;
Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio.
Am J Physiol Renal Physiol. 2015 Jul 15;309(2):F120-36. doi: 10.1152/ajprenal.00507.2014. Epub 2015 May 13.
We previously reported that the deletion of the pH sensor GPR4 causes a non-gap metabolic acidosis and defective net acid excretion (NAE) in the GPR4 knockout mouse (GPR4-/-) (Sun X, Yang LV, Tiegs BC, Arend LJ, McGraw DW, Penn RB, and Petrovic S. J Am Soc Nephrol 21: 1745-1755, 2010). Since the major regulatory site of NAE in the kidney is the collecting duct (CD), we examined acid-base transport proteins in intercalated cells (ICs) of the CD and found comparable mRNA expression of kidney anion exchanger 1 (kAE1), pendrin, and the a4 subunit of H(+)-ATPase in GPR4-/- vs. +/+. However, NH4Cl loading elicited adaptive doubling of AE1 mRNA in GPR4+/+, but a 50% less pronounced response in GPR4-/-. In GPR4+/+, NH4Cl loading evoked a cellular response characterized by an increase in AE1-labeled and a decrease in pendrin-labeled ICs similar to what was reported in rabbits and rats. This response did not occur in GPR4-/-. Microperfusion experiments demonstrated that the activity of the basolateral Cl(-)/HCO3(-) exchanger, kAE1, in CDs isolated from GPR4-/- failed to increase with NH4Cl loading, in contrast to the increase observed in GPR4+/+. Therefore, the deficiency of GPR4 blunted, but did not eliminate the adaptive response to an acid load, suggesting a compensatory response from other pH/CO2/bicarbonate sensors. Indeed, the expression of the calcium-sensing receptor (CaSR) was nearly doubled in GPR4-/- kidneys, in the absence of apparent disturbances of Ca(2+) homeostasis. In summary, the expression and activity of the key transport proteins in GPR4-/- mice are consistent with spontaneous metabolic acidosis, but the adaptive response to a superimposed exogenous acid load is blunted and might be partially compensated for by CaSR.
我们之前报道过,pH传感器GPR4的缺失会导致GPR4基因敲除小鼠(GPR4-/-)出现非间隙性代谢性酸中毒和净酸排泄(NAE)缺陷(Sun X,Yang LV,Tiegs BC,Arend LJ,McGraw DW,Penn RB,以及Petrovic S。《美国肾脏病学会杂志》21:1745 - 1755,2010年)。由于肾脏中NAE的主要调节部位是集合管(CD),我们检查了CD闰细胞(ICs)中的酸碱转运蛋白,发现GPR4-/-与GPR4+/+相比,肾脏阴离子交换蛋白1(kAE1)、pendrin和H(+)-ATP酶的α4亚基的mRNA表达相当。然而,氯化铵负荷使GPR4+/+中AE1 mRNA适应性加倍,但在GPR4-/-中的反应减弱了50%。在GPR4+/+中,氯化铵负荷引起细胞反应,其特征是AE1标记的ICs增加,pendrin标记的ICs减少,这与在兔子和大鼠中报道的情况类似。这种反应在GPR4-/-中未出现。微量灌注实验表明,与GPR4+/+中观察到的增加相反,从GPR4-/-分离的CD中基底外侧Cl(-)/HCO3(-)交换蛋白kAE1的活性在氯化铵负荷时未增加。因此,GPR4的缺乏使对酸负荷的适应性反应减弱,但并未消除,这表明存在来自其他pH/CO2/碳酸氢盐传感器的代偿反应。实际上,在没有明显钙(Ca2+)稳态紊乱的情况下,GPR4-/-肾脏中钙敏感受体(CaSR)的表达几乎加倍。总之,GPR4-/-小鼠中关键转运蛋白的表达和活性与自发性代谢性酸中毒一致,但对叠加的外源性酸负荷的适应性反应减弱,可能部分由CaSR代偿。