Than-Trong Emmanuel, Bally-Cuif Laure
Team Zebrafisdh Neurogenetics, Paris-Saclay University, Paris-Sud University, CNRS, UMR 9197, Paris-Saclay Institute for Neuroscience (NeuroPSI), Avenue De La Terrasse, Bldg 5, Gif-sur-Yvette, F-91190, France.
Glia. 2015 Aug;63(8):1406-28. doi: 10.1002/glia.22856. Epub 2015 May 14.
The adult central nervous system (CNS) of the zebrafish, owing to its enrichment in constitutive neurogenic niches, is becoming an increasingly used model to address fundamental questions pertaining to adult neural stem cell (NSC) biology, adult neurogenesis and neuronal repair. Studies conducted in several CNS territories (notably the telencephalon, retina, midbrain, cerebellum and spinal cord) highlighted the presence, in these niches, of progenitor cells displaying NSC-like characters. While pointing to radial glial cells (RG) as major long-lasting, constitutively active and/or activatable progenitors in most domains, these studies also revealed a high heterogeneity in the progenitor subtypes used at the top of neurogenic hierarchies, including the persistence of neuroepithelial (NE) progenitors in some areas. Likewise, dissecting the molecular pathways underlying RG maintenance and recruitment under physiological conditions and upon repair in the zebrafish model revealed shared processes but also specific cascades triggering or sustaining reparative NSC recruitment. Together, the zebrafish adult brain reveals an extensive complexity of adult NSC niches, properties and control pathways, which extends existing understanding of adult NSC biology and gives access to novel mechanisms of efficient NSC maintenance and recruitment in an adult vertebrate brain.
斑马鱼的成体中枢神经系统(CNS)由于其在组成型神经发生微环境中的富集,正日益成为一个常用的模型,用于解决与成体神经干细胞(NSC)生物学、成体神经发生和神经元修复相关的基本问题。在几个中枢神经系统区域(特别是端脑、视网膜、中脑、小脑和脊髓)进行的研究强调,在这些微环境中存在表现出神经干细胞样特征的祖细胞。这些研究指出放射状胶质细胞(RG)是大多数区域主要的长期存在、组成型活跃和/或可激活的祖细胞,同时也揭示了神经发生层级顶端所使用的祖细胞亚型具有高度异质性,包括某些区域神经上皮(NE)祖细胞的持续存在。同样,剖析斑马鱼模型中生理条件下和修复时RG维持和募集的分子途径,揭示了共同的过程以及触发或维持修复性神经干细胞募集的特定级联反应。总之,斑马鱼的成体脑揭示了成体神经干细胞微环境、特性和控制途径的广泛复杂性,这扩展了对成体神经干细胞生物学的现有理解,并为成年脊椎动物脑中高效神经干细胞维持和募集的新机制提供了线索。