Suppr超能文献

抑郁症的强化学习:计算研究综述。

Reinforcement learning in depression: A review of computational research.

机构信息

Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.

Department of Behavioral Science/Center for Experimental Research in Social Sciences, Hokkaido University, Sapporo 060-0810, Japan.

出版信息

Neurosci Biobehav Rev. 2015 Aug;55:247-67. doi: 10.1016/j.neubiorev.2015.05.005. Epub 2015 May 12.

Abstract

Despite being considered primarily a mood disorder, major depressive disorder (MDD) is characterized by cognitive and decision making deficits. Recent research has employed computational models of reinforcement learning (RL) to address these deficits. The computational approach has the advantage in making explicit predictions about learning and behavior, specifying the process parameters of RL, differentiating between model-free and model-based RL, and the computational model-based functional magnetic resonance imaging and electroencephalography. With these merits there has been an emerging field of computational psychiatry and here we review specific studies that focused on MDD. Considerable evidence suggests that MDD is associated with impaired brain signals of reward prediction error and expected value ('wanting'), decreased reward sensitivity ('liking') and/or learning (be it model-free or model-based), etc., although the causality remains unclear. These parameters may serve as valuable intermediate phenotypes of MDD, linking general clinical symptoms to underlying molecular dysfunctions. We believe future computational research at clinical, systems, and cellular/molecular/genetic levels will propel us toward a better understanding of the disease.

摘要

尽管被认为主要是一种情绪障碍,但重度抑郁症(MDD)的特征是认知和决策缺陷。最近的研究采用了强化学习(RL)的计算模型来解决这些缺陷。计算方法具有明确预测学习和行为的优势,指定 RL 的过程参数,区分无模型和基于模型的 RL,以及基于计算模型的功能磁共振成像和脑电图。由于这些优点,出现了一个计算精神病学的新兴领域,在这里我们回顾了专门针对 MDD 的特定研究。大量证据表明,MDD 与受损的大脑信号有关,这些信号涉及奖励预测误差和预期价值(“渴望”)、奖励敏感性降低(“喜欢”)和/或学习(无论是无模型还是基于模型)等,尽管因果关系尚不清楚。这些参数可能作为 MDD 的有价值的中间表型,将一般临床症状与潜在的分子功能障碍联系起来。我们相信,在临床、系统和细胞/分子/遗传水平上的未来计算研究将推动我们更好地理解这种疾病。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验