Suppr超能文献

利用谱功能网络学习构建精细时空新生儿功能图谱。

Constructing fine-grained spatiotemporal neonatal functional atlases with spectral functional network learning.

机构信息

College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China.

School of Computer Science, Northwestern Polytechnical University, Shanxi, China.

出版信息

Hum Brain Mapp. 2024 Jun 1;45(8):e26718. doi: 10.1002/hbm.26718.

Abstract

The early stages of human development are increasingly acknowledged as pivotal in laying the groundwork for subsequent behavioral and cognitive development. Spatiotemporal (4D) brain functional atlases are important in elucidating the development of human brain functions. However, the scarcity of such atlases for early life stages stems from two primary challenges: (1) the significant noise in functional magnetic resonance imaging (fMRI) that complicates the generation of high-quality atlases for each age group, and (2) the rapid and complex changes in the early human brain that hinder the maintenance of temporal consistency in 4D atlases. This study tackles these challenges by integrating low-rank tensor learning with spectral embedding, thereby proposing a novel, data-driven 4D functional atlas generation framework based on spectral functional network learning (SFNL). This method utilizes low-rank tensor learning to capture common functional connectivity (FC) patterns across different ages, thus optimizing FCs for each age group to improve the temporal consistency of functional networks. Incorporating spectral embedding aids in mitigating potential noise in FC networks derived from fMRI data by reconstructing networks in the spectral space. Utilizing SFNL-generated functional networks enables the creation of consistent and highly qualified spatiotemporal functional atlases. The framework was applied to the developing Human Connectome Project (dHCP) dataset, generating the first neonatal 4D functional atlases with fine-grained temporal and spatial resolutions. Experimental evaluations focusing on functional homogeneity, reliability, and temporal consistency demonstrated the superiority of our framework compared to existing methods for constructing 4D atlases. Additionally, network analysis experiments, including individual identification, functional systems development, and local efficiency assessments, further corroborate the efficacy and robustness of the generated atlases. The 4D atlases and related codes will be made publicly accessible (https://github.com/zhaoyunxi/neonate-atlases).

摘要

人类发展的早期阶段越来越被认为是为后续行为和认知发展奠定基础的关键。时空(4D)大脑功能图谱对于阐明人类大脑功能的发展非常重要。然而,由于两个主要挑战,早期生命阶段的此类图谱稀缺:(1)功能磁共振成像(fMRI)中的大量噪声使得为每个年龄组生成高质量的图谱变得复杂,以及(2)早期人类大脑的快速而复杂的变化,阻碍了 4D 图谱中时间一致性的维持。本研究通过将低秩张量学习与谱嵌入相结合来解决这些挑战,从而提出了一种基于谱功能网络学习(SFNL)的新型、数据驱动的 4D 功能图谱生成框架。该方法利用低秩张量学习来捕获不同年龄组之间的常见功能连接(FC)模式,从而优化每个年龄组的 FC,以提高功能网络的时间一致性。谱嵌入的纳入有助于通过在谱空间中重建网络来减轻来自 fMRI 数据的 FC 网络中的潜在噪声。利用 SFNL 生成的功能网络,可以创建一致且高度合格的时空功能图谱。该框架应用于发展中的人类连接组计划(dHCP)数据集,以生成具有精细时间和空间分辨率的第一个新生儿 4D 功能图谱。重点关注功能同质性、可靠性和时间一致性的实验评估表明,与构建 4D 图谱的现有方法相比,我们的框架具有优越性。此外,网络分析实验,包括个体识别、功能系统发展和局部效率评估,进一步证实了生成图谱的功效和稳健性。4D 图谱和相关代码将公开提供(https://github.com/zhaoyunxi/neonate-atlases)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32de/11144955/67c7048f2c34/HBM-45-e26718-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验