Suppr超能文献

从技术发展角度看蛋白质晶体学

Protein Crystallography from the Perspective of Technology Developments.

作者信息

Su Xiao-Dong, Zhang Heng, Terwilliger Thomas C, Liljas Anders, Xiao Junyu, Dong Yuhui

机构信息

State Key Laboratory of Protein and Plant Gene Research, and Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China.

Bioscience Division, Los Alamos National Laboratory, Mail Stop M888, Los Alamos, NM 87545, USA.

出版信息

Crystallogr Rev. 2015;21(1-2):122-153. doi: 10.1080/0889311X.2014.973868.

Abstract

Early on, crystallography was a domain of mineralogy and mathematics and dealt mostly with symmetry properties and imaginary crystal lattices. This changed when Wilhelm Conrad Röntgen discovered X-rays in 1895, and in 1912 Max von Laue and his associates discovered X-ray irradiated salt crystals would produce diffraction patterns that could reveal the internal atomic periodicity of the crystals. In the same year the father-and-son team, Henry and Lawrence Bragg successfully solved the first crystal structure of sodium chloride and the era of modern crystallography began. Protein crystallography (PX) started some 20 years later with the pioneering work of British crystallographers. In the past 50-60 years, the achievements of modern crystallography and particularly those in protein crystallography have been due to breakthroughs in theoretical and technical advancements such as phasing and direct methods; to more powerful X-ray sources such as synchrotron radiation (SR); to more sensitive and efficient X-ray detectors; to ever faster computers and to improvements in software. The exponential development of protein crystallography has been accelerated by the invention and applications of recombinant DNA technology that can yield nearly any protein of interest in large amounts and with relative ease. Novel methods, informatics platforms, and technologies for automation and high-throughput have allowed the development of large-scale, high efficiency macromolecular crystallography efforts in the field of structural genomics (SG). Very recently, the X-ray free-electron laser (XFEL) sources and its applications in protein crystallography have shown great potential for revolutionizing the whole field again in the near future.

摘要

早期,晶体学是矿物学和数学的一个领域,主要研究对称性和假想的晶格。1895年威廉·康拉德·伦琴发现X射线后,情况发生了变化。1912年,马克斯·冯·劳厄及其同事发现,用X射线照射盐晶体时会产生衍射图案,这些图案可以揭示晶体内部的原子周期性。同年,父子团队亨利和劳伦斯·布拉格成功解析出氯化钠的首个晶体结构,现代晶体学时代由此开启。蛋白质晶体学(PX)大约在20年后随着英国晶体学家的开创性工作而起步。在过去的50到60年里,现代晶体学的成就,尤其是蛋白质晶体学的成就,得益于诸如相位法和直接法等理论和技术进步的突破;得益于更强大的X射线源,如同步辐射(SR);得益于更灵敏、高效的X射线探测器;得益于运算速度越来越快的计算机以及软件的改进。重组DNA技术的发明和应用能够相对轻松地大量生产几乎任何感兴趣的蛋白质,这加速了蛋白质晶体学的指数式发展。新型方法、信息学平台以及自动化和高通量技术推动了结构基因组学(SG)领域大规模、高效率的大分子晶体学研究工作的开展。最近,X射线自由电子激光(XFEL)源及其在蛋白质晶体学中的应用显示出在不久的将来再次彻底改变整个领域的巨大潜力。

相似文献

9
High-throughput crystallography for structural genomics.用于结构基因组学的高通量晶体学。
Curr Opin Struct Biol. 2009 Oct;19(5):573-84. doi: 10.1016/j.sbi.2009.08.002. Epub 2009 Sep 16.
10
Laue diffraction and time-resolved crystallography: a personal history.劳厄衍射与时间分辨晶体学:个人经历
Philos Trans A Math Phys Eng Sci. 2019 Jun 17;377(2147):20180243. doi: 10.1098/rsta.2018.0243.

引用本文的文献

10
Sample Delivery Media for Serial Crystallography.用于连续晶体学的样品传递介质。
Int J Mol Sci. 2019 Mar 4;20(5):1094. doi: 10.3390/ijms20051094.

本文引用的文献

6
An improved integration method in serial femtosecond crystallography.串行飞秒晶体学中的一种改进积分方法。
Acta Crystallogr D Biol Crystallogr. 2014 May;70(Pt 5):1202-11. doi: 10.1107/S1399004714002004. Epub 2014 Apr 26.
9
Structural genomics studies of human caries pathogen Streptococcus mutans.人类龋齿病原菌变形链球菌的结构基因组学研究。
J Struct Funct Genomics. 2014 Sep;15(3):91-9. doi: 10.1007/s10969-014-9172-3. Epub 2014 Jan 29.
10
Cell-free membrane protein expression.无细胞膜蛋白表达
Methods Mol Biol. 2014;1118:267-73. doi: 10.1007/978-1-62703-782-2_18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验