Suppr超能文献

AFsample2通过AlphaFold2预测多种构象和集合。

AFsample2 predicts multiple conformations and ensembles with AlphaFold2.

作者信息

Kalakoti Yogesh, Wallner Björn

机构信息

Division of Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.

出版信息

Commun Biol. 2025 Mar 5;8(1):373. doi: 10.1038/s42003-025-07791-9.

Abstract

Understanding protein dynamics and conformational states is crucial for insights into biological processes and disease mechanisms, which can aid drug development. Recently, several methods have been devised to broaden the conformational predictions made by AlphaFold2 (AF2). We introduce AFsample2, a method using random MSA column masking to reduce co-evolutionary signals, enhancing structural diversity in AF2-generated models. AFsample2 effectively predicts alternative states for various proteins, producing high-quality end states and diverse conformational ensembles. In the OC23 dataset, alternate state models improved (ΔTM>0.05) in 9 out of 23 cases without affecting preferred state generation. Similar results were seen in 16 membrane protein transporters, with 11 out of 16 targets showing improvement. TM-score improvements to experimental end states were substantial, sometimes exceeding 50%, improving from 0.58 to 0.98. Additionally, AFsample2 increased the diversity of intermediate conformations by 70% compared to standard AF2, producing highly confident models potentially representing intermediate states. For four targets, predicted intermediate states were structurally similar to known structural homologs in the PDB, suggesting that they are true intermediate states. These findings indicate that AFsample2 can used to provide structural insights into proteins with multiple states, as well as potential paths between the states.

摘要

了解蛋白质动力学和构象状态对于洞察生物过程和疾病机制至关重要,这有助于药物开发。最近,已经设计了几种方法来拓宽AlphaFold2(AF2)所做的构象预测。我们引入了AFsample2,这是一种使用随机多序列比对(MSA)列掩码来减少共进化信号的方法,可增强AF2生成模型中的结构多样性。AFsample2有效地预测了各种蛋白质的替代状态,产生了高质量的最终状态和多样的构象集合。在OC23数据集中,23个案例中有9个案例的替代状态模型得到了改善(ΔTM>0.05),同时不影响首选状态的生成。在16个膜蛋白转运体中也观察到了类似的结果,16个靶点中有11个显示出改善。与实验最终状态相比,TM分数有显著提高,有时超过50%,从0.58提高到0.98。此外,与标准AF2相比,AFsample2将中间构象的多样性提高了70%,产生了可能代表中间状态的高度可信模型。对于四个靶点,预测的中间状态在结构上与蛋白质数据银行(PDB)中已知的结构同源物相似,这表明它们是真正的中间状态。这些发现表明,AFsample2可用于提供对具有多种状态的蛋白质的结构洞察,以及这些状态之间的潜在路径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5c2/11882827/bb565261032e/42003_2025_7791_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验