Suppr超能文献

具有虚拟增强检测视图的超声加热编码光声断层扫描

Ultrasonic-heating-encoded photoacoustic tomography with virtually augmented detection view.

作者信息

Wang Lidai, Li Guo, Xia Jun, Wang Lihong V

机构信息

Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis Campus Box 1097, One Brookings Drive, St. Louis, Missouri 63130-4899, USA.

出版信息

Optica. 2015;2(4):307-312. doi: 10.1364/OPTICA.2.000307.

Abstract

Photoacoustic (PA) imaging of arbitrarily-shaped or oriented objects may miss important features because PA waves propagate normal to structure boundaries and may miss the acoustic detectors when the detection view has a limited angular range. To overcome this long-standing problem, we present an ultrasonic thermal encoding approach that is universally applicable. We exploit the temperature dependence of the Grueneisen parameter and encode a confined [[What does confined mean here?]] voxel using heat generated by a focused ultrasonic transducer. The PA amplitude from the encoded voxel is increased while those from the neighboring voxels are unchanged. Consequently, the amplitude-increased PA waves propagate in all directions due to the round cross-section of the encoded region and thus can be received at any viewing angle on the cross-sectional plane [[Please check throughout the manuscript for similar places.]]. We built a mathematical model for the thermally encoded PA tomography, performed a numerical simulation, and experimentally validated the ultrasonic thermal encoding efficiency. As a proof of concept, we demonstrate full-view in vivo vascular imaging and compare it to the original linear-array PA tomography system, showing dramatically enhanced imaging of arbitrarily oriented blood vessels. Since ultrasonic heating can be focused deeply, this method can be applied to deep tissue imaging and is promising for full-view imaging of other features of biomedical interest, such as tumor margins.

摘要

对任意形状或取向的物体进行光声(PA)成像可能会遗漏重要特征,因为PA波垂直于结构边界传播,并且当检测视角的角度范围有限时,可能会错过声学探测器。为了克服这一长期存在的问题,我们提出了一种普遍适用的超声热编码方法。我们利用格鲁尼森参数对温度的依赖性,并用聚焦超声换能器产生的热量对一个受限的体素进行编码。来自编码体素的PA幅度增加,而相邻体素的PA幅度保持不变。因此,由于编码区域的圆形横截面,幅度增加的PA波向各个方向传播,从而可以在横截面上的任何视角被接收。我们建立了热编码PA层析成像的数学模型,进行了数值模拟,并通过实验验证了超声热编码效率。作为概念验证,我们展示了体内全视角血管成像,并将其与原始线性阵列PA层析成像系统进行比较,结果显示任意取向血管的成像得到了显著增强。由于超声加热可以深入聚焦,该方法可应用于深部组织成像,并且有望用于对其他生物医学感兴趣的特征(如肿瘤边缘)进行全视角成像。

相似文献

2
Two-Dimensional Photoacoustic/Ultrasonic Endoscopic Imaging Based on a Line-Focused Transducer.
Front Bioeng Biotechnol. 2022 Jan 6;9:807633. doi: 10.3389/fbioe.2021.807633. eCollection 2021.
4
Ultrasonically encoded photoacoustic flowgraphy in biological tissue.
Phys Rev Lett. 2013 Nov 15;111(20):204301. doi: 10.1103/PhysRevLett.111.204301. Epub 2013 Nov 12.
5
Multiview Hilbert transformation in full-ring transducer array-based photoacoustic computed tomography.
J Biomed Opt. 2017 Jul 1;22(7):76017. doi: 10.1117/1.JBO.22.7.076017.
6
Multiview Hilbert transformation for full-view photoacoustic computed tomography using a linear array.
J Biomed Opt. 2015 Jun;20(6):066010. doi: 10.1117/1.JBO.20.6.066010.
7
Fast full-view photoacoustic imaging by combined scanning with a linear transducer array.
Opt Express. 2007 Nov 12;15(23):15566-75. doi: 10.1364/oe.15.015566.
9
Intravascular confocal photoacoustic endoscope with dual-element ultrasonic transducer.
Opt Express. 2015 Apr 6;23(7):9130-6. doi: 10.1364/OE.23.009130.
10
Thermal Memory Based Photoacoustic Imaging of Temperature.
Optica. 2019 Feb;6(2):198-205. doi: 10.1364/OPTICA.6.000198. Epub 2019 Feb 14.

引用本文的文献

1
Spatial-offset pump-probe imaging of nonradiative dynamics at optical resolution.
Sci Adv. 2025 Jul 4;11(27):eadw4939. doi: 10.1126/sciadv.adw4939. Epub 2025 Jul 2.
2
Challenges and advances in two-dimensional photoacoustic computed tomography: a review.
J Biomed Opt. 2024 Jul;29(7):070901. doi: 10.1117/1.JBO.29.7.070901. Epub 2024 Jul 12.
3
Compensating unknown speed of sound in learned fast 3D limited-view photoacoustic tomography.
Photoacoustics. 2024 Feb 17;37:100597. doi: 10.1016/j.pacs.2024.100597. eCollection 2024 Jun.
4
Quantitative photoacoustic tomography: modeling and inverse problems.
J Biomed Opt. 2024 Jan;29(Suppl 1):S11509. doi: 10.1117/1.JBO.29.S1.S11509. Epub 2023 Dec 20.
5
Real-time assessment of high-intensity focused ultrasound heating and cavitation with hybrid optoacoustic ultrasound imaging.
Photoacoustics. 2023 May 10;31:100508. doi: 10.1016/j.pacs.2023.100508. eCollection 2023 Jun.
6
Performance evaluation of mesoscopic photoacoustic imaging.
Photoacoustics. 2023 May 6;31:100505. doi: 10.1016/j.pacs.2023.100505. eCollection 2023 Jun.
7
Compensating for visibility artefacts in photoacoustic imaging with a deep learning approach providing prediction uncertainties.
Photoacoustics. 2020 Oct 27;21:100218. doi: 10.1016/j.pacs.2020.100218. eCollection 2021 Mar.
8
Spherical Array System for High-Precision Transcranial Ultrasound Stimulation and Optoacoustic Imaging in Rodents.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jan;68(1):107-115. doi: 10.1109/TUFFC.2020.2994877. Epub 2020 Dec 23.
9
Listening to tissues with new light: recent technological advances in photoacoustic imaging.
J Opt. 2019 Oct;21(10). doi: 10.1088/2040-8986/ab3b1a. Epub 2019 Sep 9.

本文引用的文献

1
Grueneisen relaxation photoacoustic microscopy.
Phys Rev Lett. 2014 Oct 24;113(17):174301. doi: 10.1103/PhysRevLett.113.174301. Epub 2014 Oct 20.
2
Dedicated 3D photoacoustic breast imaging.
Med Phys. 2013 Nov;40(11):113301. doi: 10.1118/1.4824317.
3
Ultrasonically encoded photoacoustic flowgraphy in biological tissue.
Phys Rev Lett. 2013 Nov 15;111(20):204301. doi: 10.1103/PhysRevLett.111.204301. Epub 2013 Nov 12.
4
Improving limited-view photoacoustic tomography with an acoustic reflector.
J Biomed Opt. 2013 Nov;18(11):110505. doi: 10.1117/1.JBO.18.11.110505.
5
Improving visibility in photoacoustic imaging using dynamic speckle illumination.
Opt Lett. 2013 Dec 1;38(23):5188-91. doi: 10.1364/OL.38.005188.
6
Ultrasound-heated photoacoustic flowmetry.
J Biomed Opt. 2013 Nov;18(11):117003. doi: 10.1117/1.JBO.18.11.117003.
8
Single-cell label-free photoacoustic flowoxigraphy in vivo.
Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):5759-64. doi: 10.1073/pnas.1215578110. Epub 2013 Mar 27.
9
Single-cell photoacoustic thermometry.
J Biomed Opt. 2013 Feb;18(2):26003. doi: 10.1117/1.JBO.18.2.026003.
10
Video-rate functional photoacoustic microscopy at depths.
J Biomed Opt. 2012 Oct;17(10):106007. doi: 10.1117/1.JBO.17.10.106007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验