Nanobioimaging Laboratory, Department of Instrumentation and Applied Physics, Indian Institute of Science Bangalore, India.
Front Mol Biosci. 2014 Sep 9;1:11. doi: 10.3389/fmolb.2014.00011. eCollection 2014.
Temporal resolution is a key factor for imaging rapidly occurring events in biology. In this feature article, I investigate an approximate estimate for determining the temporal resolution limit. The condition that led to this limit is, the time taken by the ensemble (99.9%) of excited molecules to relax to ground state, assuming all the emitted photons are detected. In a simplistic three-level system, the temporal resolution is, ≈3τ p , where τ p = (log e 10)/(kf + knr ) and, kf and knr are respectively the radiative and non-radiative emission rates. This further assumes the ideal condition that, the quantum efficiency of the detector is unity and there are no other loses. We discuss few state-of-art microscopy techniques that are capable of high temporal resolution. This includes techniques such as multifocal multiphoton microscopy (MMM), multifocal plane microscopy, multiple excitation spot optical microscopy (MESO), multiplane microscopy and multiple light-sheet microscopy (MLSM).
时间分辨率是成像生物学中快速发生事件的关键因素。在这篇专题文章中,我研究了一种确定时间分辨率限制的近似估计方法。导致这种限制的条件是,假设所有发射的光子都被检测到,那么处于激发态的分子集合(99.9%)弛豫到基态所需的时间。在一个简单的三能级系统中,时间分辨率约为 3τp,其中 τp = (log e 10)/(kf + knr),kf 和 knr 分别是辐射和非辐射发射率。这进一步假设理想条件是,探测器的量子效率为 1 且没有其他损耗。我们讨论了几种能够实现高时间分辨率的最先进的显微镜技术。这些技术包括多焦点多光子显微镜(MMM)、多焦点平面显微镜、多个激发点光学显微镜(MESO)、多平面显微镜和多个光片显微镜(MLSM)。