Suppr超能文献

改善患者前列腺癌风险评估:从静态的、全球通用的风险计算器转向动态的、针对具体临床实践的风险计算器。

Improving patient prostate cancer risk assessment: Moving from static, globally-applied to dynamic, practice-specific risk calculators.

作者信息

Strobl Andreas N, Vickers Andrew J, Van Calster Ben, Steyerberg Ewout, Leach Robin J, Thompson Ian M, Ankerst Donna P

机构信息

TU München, Department of Mathematics, Munich, Germany; HelmholtzZentrum München, Institute of Computational Biology, Munich, Germany.

Memorial Sloan-Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York City, NY, USA.

出版信息

J Biomed Inform. 2015 Aug;56:87-93. doi: 10.1016/j.jbi.2015.05.001. Epub 2015 May 16.

Abstract

Clinical risk calculators are now widely available but have generally been implemented in a static and one-size-fits-all fashion. The objective of this study was to challenge these notions and show via a case study concerning risk-based screening for prostate cancer how calculators can be dynamically and locally tailored to improve on-site patient accuracy. Yearly data from five international prostate biopsy cohorts (3 in the US, 1 in Austria, 1 in England) were used to compare 6 methods for annual risk prediction: static use of the online US-developed Prostate Cancer Prevention Trial Risk Calculator (PCPTRC); recalibration of the PCPTRC; revision of the PCPTRC; building a new model each year using logistic regression, Bayesian prior-to-posterior updating, or random forests. All methods performed similarly with respect to discrimination, except for random forests, which were worse. All methods except for random forests greatly improved calibration over the static PCPTRC in all cohorts except for Austria, where the PCPTRC had the best calibration followed closely by recalibration. The case study shows that a simple annual recalibration of a general online risk tool for prostate cancer can improve its accuracy with respect to the local patient practice at hand.

摘要

临床风险计算器如今已广泛应用,但通常是以静态且一刀切的方式实施的。本研究的目的是挑战这些观念,并通过一项关于前列腺癌风险筛查的案例研究表明,如何对计算器进行动态和本地化定制,以提高现场患者风险预测的准确性。来自五个国际前列腺活检队列(美国3个、奥地利1个、英国1个)的年度数据被用于比较6种年度风险预测方法:静态使用美国开发的在线前列腺癌预防试验风险计算器(PCPTRC);对PCPTRC进行重新校准;对PCPTRC进行修订;每年使用逻辑回归、贝叶斯先验到后验更新或随机森林构建新模型。除随机森林表现较差外,所有方法在区分能力方面表现相似。除奥地利外,在所有队列中,除随机森林外的所有方法在校准方面都比静态PCPTRC有了很大改进,在奥地利,PCPTRC校准效果最佳,重新校准紧随其后。该案例研究表明,对前列腺癌通用在线风险工具进行简单的年度重新校准,可以提高其针对当地患者实际情况的准确性。

相似文献

2
Evaluating the PCPT risk calculator in ten international biopsy cohorts: results from the Prostate Biopsy Collaborative Group.
World J Urol. 2012 Apr;30(2):181-7. doi: 10.1007/s00345-011-0818-5. Epub 2011 Dec 31.
5
Evaluation of Prostate Cancer Risk Calculators for Shared Decision Making Across Diverse Urology Practices in Michigan.
Urology. 2017 Jun;104:137-142. doi: 10.1016/j.urology.2017.01.039. Epub 2017 Feb 22.
6
Prostate cancer risk prediction in a urology clinic in Mexico.
Urol Oncol. 2013 Oct;31(7):1085-92. doi: 10.1016/j.urolonc.2011.12.023. Epub 2012 Feb 3.
8
Prostate cancer and prostate-specific antigen (PSA) screening in Austria.
Wien Klin Wochenschr. 2005 Jul;117(13-14):457-61. doi: 10.1007/s00508-005-0395-y.

引用本文的文献

2
Validation of the Barcelona-MRI predictive model when PI-RADS v2.1 is used with trans-perineal prostate biopsies.
Int Braz J Urol. 2024 Sep-Oct;50(5):595-604. doi: 10.1590/S1677-5538.IBJU.2024.0204.
4
Risk score model to automatically detect prostate cancer patients by integrating diagnostic parameters.
Front Oncol. 2024 May 15;14:1323247. doi: 10.3389/fonc.2024.1323247. eCollection 2024.
5
Identification of risk factors for the onset of delirium associated with COVID-19 by mining nursing records.
PLoS One. 2024 Jan 19;19(1):e0296760. doi: 10.1371/journal.pone.0296760. eCollection 2024.
6
Concerns regarding prostate cancer screening guidelines in minority populations.
Prostate Cancer Prostatic Dis. 2024 Dec;27(4):591-593. doi: 10.1038/s41391-023-00765-0. Epub 2023 Dec 19.
7
Comparison of Rotterdam and Barcelona Magnetic Resonance Imaging Risk Calculators for Predicting Clinically Significant Prostate Cancer.
Eur Urol Open Sci. 2023 May 22;53:46-54. doi: 10.1016/j.euros.2023.03.013. eCollection 2023 Jul.
8
EHR foundation models improve robustness in the presence of temporal distribution shift.
Sci Rep. 2023 Mar 7;13(1):3767. doi: 10.1038/s41598-023-30820-8.

本文引用的文献

1
A spline-based tool to assess and visualize the calibration of multiclass risk predictions.
J Biomed Inform. 2015 Apr;54:283-93. doi: 10.1016/j.jbi.2014.12.016. Epub 2015 Jan 9.
2
A new framework to enhance the interpretation of external validation studies of clinical prediction models.
J Clin Epidemiol. 2015 Mar;68(3):279-89. doi: 10.1016/j.jclinepi.2014.06.018. Epub 2014 Aug 30.
3
Towards better clinical prediction models: seven steps for development and an ABCD for validation.
Eur Heart J. 2014 Aug 1;35(29):1925-31. doi: 10.1093/eurheartj/ehu207. Epub 2014 Jun 4.
5
A study in transfer learning: leveraging data from multiple hospitals to enhance hospital-specific predictions.
J Am Med Inform Assoc. 2014 Jul-Aug;21(4):699-706. doi: 10.1136/amiajnl-2013-002162. Epub 2014 Jan 30.
6
Statins: new American guidelines for prevention of cardiovascular disease.
Lancet. 2013 Nov 30;382(9907):1762-5. doi: 10.1016/S0140-6736(13)62388-0. Epub 2013 Nov 20.
8
Dynamic prediction modeling approaches for cardiac surgery.
Circ Cardiovasc Qual Outcomes. 2013 Nov;6(6):649-58. doi: 10.1161/CIRCOUTCOMES.111.000012. Epub 2013 Oct 22.
9
Simple dichotomous updating methods improved the validity of polytomous prediction models.
J Clin Epidemiol. 2013 Oct;66(10):1158-65. doi: 10.1016/j.jclinepi.2013.04.014. Epub 2013 Jul 9.
10
Recalibration and validation of a preoperative risk prediction model for mortality in major colorectal surgery.
Dis Colon Rectum. 2013 Jul;56(7):844-9. doi: 10.1097/DCR.0b013e31828343f2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验