Suppr超能文献

限制在纳米通道中的大肠杆菌DNA单分子中的拓扑事件。

Topological events in single molecules of E. coli DNA confined in nanochannels.

作者信息

Reifenberger Jeffrey G, Dorfman Kevin D, Cao Han

机构信息

BioNano Genomics, 9640 Towne Centre Drive, Ste 100, San Diego, CA 92121, USA.

出版信息

Analyst. 2015 Jul 21;140(14):4887-94. doi: 10.1039/c5an00343a. Epub 2015 May 20.

Abstract

We present experimental data concerning potential topological events such as folds, internal backfolds, and/or knots within long molecules of double-stranded DNA when they are stretched by confinement in a nanochannel. Genomic DNA from E. coli was labeled near the 'GCTCTTC' sequence with a fluorescently labeled dUTP analog and stained with the DNA intercalator YOYO. Individual long molecules of DNA were then linearized and imaged using methods based on the NanoChannel Array technology (Irys® System) available from BioNano Genomics. Data were collected on 189 153 molecules of length greater than 50 kilobases. A custom code was developed to search for abnormal intensity spikes in the YOYO backbone profile along the length of individual molecules. By correlating the YOYO intensity spikes with the aligned barcode pattern to the reference, we were able to correlate the bright intensity regions of YOYO with abnormal stretching in the molecule, which suggests these events were either a knot or a region of internal backfolding within the DNA. We interpret the results of our experiments involving molecules exceeding 50 kilobases in the context of existing simulation data for relatively short DNA, typically several kilobases. The frequency of these events is lower than the predictions from simulations, while the size of the events is larger than simulation predictions and often exceeds the molecular weight of the simulated molecules. We also identified DNA molecules that exhibit large, single folds as they enter the nanochannels. Overall, topological events occur at a low frequency (∼7% of all molecules) and pose an easily surmountable obstacle for the practice of genome mapping in nanochannels.

摘要

我们展示了关于双链DNA长分子在纳米通道中受限制拉伸时可能出现的拓扑事件(如折叠、内部反向折叠和/或纽结)的实验数据。大肠杆菌的基因组DNA在“GCTCTTC”序列附近用荧光标记的dUTP类似物进行标记,并用DNA嵌入剂YOYO进行染色。然后,使用来自BioNano Genomics的基于纳米通道阵列技术(Irys®系统)的方法,将单个DNA长分子线性化并成像。收集了189153个长度大于50千碱基的分子的数据。开发了一个自定义代码,以搜索沿单个分子长度的YOYO主链轮廓中的异常强度峰值。通过将YOYO强度峰值与对齐的条形码模式与参考进行关联,我们能够将YOYO的明亮强度区域与分子中的异常拉伸相关联,这表明这些事件要么是一个纽结,要么是DNA内部的反向折叠区域。我们在相对较短的DNA(通常为几千碱基)的现有模拟数据的背景下,解释了我们涉及超过50千碱基分子的实验结果。这些事件的频率低于模拟预测,而事件的大小大于模拟预测,并且常常超过模拟分子的分子量。我们还鉴定出在进入纳米通道时呈现大的单折叠的DNA分子。总体而言,拓扑事件发生频率较低(约占所有分子的7%),并且对纳米通道中的基因组图谱绘制实践构成了一个易于克服的障碍。

相似文献

1
Topological events in single molecules of E. coli DNA confined in nanochannels.
Analyst. 2015 Jul 21;140(14):4887-94. doi: 10.1039/c5an00343a. Epub 2015 May 20.
2
Simulations of knotting of DNA during genome mapping.
Biomicrofluidics. 2017 Apr 11;11(2):024117. doi: 10.1063/1.4979605. eCollection 2017 Mar.
3
Interactions between two knots in nanochannel-confined DNA molecules.
J Chem Phys. 2021 Oct 21;155(15):154901. doi: 10.1063/5.0067076.
4
Nanochannel confinement: DNA stretch approaching full contour length.
Lab Chip. 2011 May 21;11(10):1721-9. doi: 10.1039/c0lc00680g. Epub 2011 Mar 23.
6
Measuring the wall depletion length of nanoconfined DNA.
J Chem Phys. 2018 Sep 14;149(10):104901. doi: 10.1063/1.5040458.
7
Tunable Confinement for Bridging Single-Cell Manipulation and Single-Molecule DNA Linearization.
Small. 2018 Apr;14(17):e1800229. doi: 10.1002/smll.201800229. Epub 2018 Mar 25.
8
Extension distribution for DNA confined in a nanochannel near the Odijk regime.
J Chem Phys. 2019 Sep 21;151(11):114903. doi: 10.1063/1.5121305.
10
Measurements of DNA barcode label separations in nanochannels from time-series data.
Biomicrofluidics. 2015 Dec 29;9(6):064119. doi: 10.1063/1.4938732. eCollection 2015 Nov.

引用本文的文献

1
The Emergence of Nanofluidics for Single-Biomolecule Manipulation and Sensing.
Anal Chem. 2025 Apr 29;97(16):8641-8653. doi: 10.1021/acs.analchem.4c06684. Epub 2025 Apr 17.
2
Unraveling the Influence of Topology and Spatial Confinement on Equilibrium and Relaxation Properties of Interlocked Ring Polymers.
Macromolecules. 2024 Mar 21;57(7):3223-3233. doi: 10.1021/acs.macromol.3c02203. eCollection 2024 Apr 9.
3
3D Printing-Enabled DNA Extraction for Long-Read Genomics.
ACS Omega. 2020 Aug 12;5(33):20817-20824. doi: 10.1021/acsomega.0c01912. eCollection 2020 Aug 25.
4
Cultivation-Free Typing of Bacteria Using Optical DNA Mapping.
ACS Infect Dis. 2020 May 8;6(5):1076-1084. doi: 10.1021/acsinfecdis.9b00464. Epub 2020 Apr 28.
5
Complex DNA knots detected with a nanopore sensor.
Nat Commun. 2019 Oct 2;10(1):4473. doi: 10.1038/s41467-019-12358-4.
6
Extension distribution for DNA confined in a nanochannel near the Odijk regime.
J Chem Phys. 2019 Sep 21;151(11):114903. doi: 10.1063/1.5121305.
7
Measuring the wall depletion length of nanoconfined DNA.
J Chem Phys. 2018 Sep 14;149(10):104901. doi: 10.1063/1.5040458.
8
A nanofluidic knot factory based on compression of single DNA in nanochannels.
Nat Commun. 2018 Apr 17;9(1):1506. doi: 10.1038/s41467-018-03901-w.
9
Evaluation of Blob Theory for the Diffusion of DNA in Nanochannels.
Macromolecules. 2018 Mar 13;51(5):1748-1755. doi: 10.1021/acs.macromol.7b02270. Epub 2018 Feb 20.
10
Odijk excluded volume interactions during the unfolding of DNA confined in a nanochannel.
Macromolecules. 2018 Feb 13;51(3):1172-1180. doi: 10.1021/acs.macromol.7b02466. Epub 2018 Jan 24.

本文引用的文献

1
Conformation Model of Back-Folding and Looping of a Single DNA Molecule Confined Inside a Nanochannel.
ACS Macro Lett. 2012 Aug 21;1(8):1046-1050. doi: 10.1021/mz300323a. Epub 2012 Aug 2.
2
Knotting and Unknotting Dynamics of DNA Strands in Nanochannels.
ACS Macro Lett. 2014 Sep 16;3(9):876-880. doi: 10.1021/mz500402s. Epub 2014 Aug 19.
4
Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology.
Gigascience. 2014 Dec 30;3(1):34. doi: 10.1186/2047-217X-3-34. eCollection 2014.
5
Confined polymers in the extended de Gennes regime.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Dec;90(6):062602. doi: 10.1103/PhysRevE.90.062602. Epub 2014 Dec 22.
6
Extension of DNA in a nanochannel as a rod-to-coil transition.
Phys Rev Lett. 2013 May 17;110(20):208103. doi: 10.1103/PhysRevLett.110.208103. Epub 2013 May 13.
8
Finished sequence and assembly of the DUF1220-rich 1q21 region using a haploid human genome.
BMC Genomics. 2014 May 20;15(1):387. doi: 10.1186/1471-2164-15-387.
10
Heterogeneous staining: a tool for studies of how fluorescent dyes affect the physical properties of DNA.
Nucleic Acids Res. 2013 Oct;41(19):e184. doi: 10.1093/nar/gkt755. Epub 2013 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验