Chintala Hemabindu, Krupska Izabela, Yan Lulu, Lau Lester, Grant Maria, Chaqour Brahim
State University of New York (SUNY) Eye Institute and Department of Cell Biology, Downstate Medical Center, Brooklyn, NY 11203, USA.
Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, IL 60607, USA.
Development. 2015 Jul 1;142(13):2364-74. doi: 10.1242/dev.121913. Epub 2015 May 22.
Physiological angiogenesis depends on the highly coordinated actions of multiple angiogenic regulators. CCN1 is a secreted cysteine-rich and integrin-binding matricellular protein required for proper cardiovascular development. However, our understanding of the cellular origins and activities of this molecule is incomplete. Here, we show that CCN1 is predominantly expressed in angiogenic endothelial cells (ECs) at the leading front of actively growing vessels in the mouse retina. Endothelial deletion of CCN1 in mice using a Cre-Lox system is associated with EC hyperplasia, loss of pericyte coverage and formation of dense retinal vascular networks lacking the normal hierarchical arrangement of arterioles, capillaries and venules. CCN1 is a product of an immediate-early gene that is transcriptionally induced in ECs in response to stimulation by vascular endothelial growth factor (VEGF). We found that CCN1 activity is integrated with VEGF receptor 2 (VEGF-R2) activation and downstream signaling pathways required for tubular network formation. CCN1-integrin binding increased the expression of and association between Src homology 2 domain-containing protein tyrosine phosphatase-1 (SHP-1) and VEGF-R2, which leads to rapid dephosphorylation of VEGF-R2 tyrosine, thus preventing EC hyperproliferation. Predictably, CCN1 further brings receptors/signaling molecules into proximity that are otherwise spatially separated. Furthermore, CCN1 induces integrin-dependent Notch activation in cultured ECs, and its targeted gene inactivation in vivo alters Notch-dependent vascular specification and remodeling, suggesting that functional levels of Notch signaling requires CCN1 activity. These data highlight novel functions of CCN1 as a naturally optimized molecule, fine-controlling key processes in physiological angiogenesis and safeguarding against aberrant angiogenic responses.
生理性血管生成依赖于多种血管生成调节因子的高度协调作用。CCN1是一种分泌型富含半胱氨酸且与整合素结合的基质细胞蛋白,是正常心血管发育所必需的。然而,我们对该分子的细胞起源和活性的了解并不完整。在此,我们表明CCN1主要在小鼠视网膜中活跃生长血管前沿的血管生成内皮细胞(ECs)中表达。使用Cre-Lox系统在小鼠体内进行CCN1的内皮细胞缺失与ECs增生、周细胞覆盖丧失以及缺乏小动脉、毛细血管和小静脉正常分层排列的致密视网膜血管网络形成有关。CCN1是一个即早基因的产物,在ECs中受到血管内皮生长因子(VEGF)刺激后会被转录诱导。我们发现CCN1的活性与VEGF受体2(VEGF-R2)的激活以及管状网络形成所需的下游信号通路整合在一起。CCN1与整合素的结合增加了含Src同源2结构域的蛋白酪氨酸磷酸酶-1(SHP-1)与VEGF-R2之间的表达和关联,这导致VEGF-R2酪氨酸迅速去磷酸化,从而防止ECs过度增殖。可以预见,CCN1进一步使原本在空间上分离的受体/信号分子靠近。此外,CCN1在培养的ECs中诱导整合素依赖性Notch激活,其在体内的靶向基因失活改变了Notch依赖性血管特化和重塑,表明Notch信号的功能水平需要CCN1的活性。这些数据突出了CCN1作为一种自然优化分子的新功能,它精细控制生理性血管生成中的关键过程并防止异常血管生成反应。
Mol Cell Biol. 2019-8-27
Arterioscler Thromb Vasc Biol. 2017-5
Front Bioeng Biotechnol. 2025-8-6
J Cell Commun Signal. 2023-6
Front Cardiovasc Med. 2021-8-11
Front Immunol. 2021
Front Oncol. 2021-2-4
Nat Commun. 2015-3-10
Proc Natl Acad Sci U S A. 2015-1-20
Proc Natl Acad Sci U S A. 2014-9-2
Trends Dev Biol. 2013
Cell Metab. 2013-8-22