Yan Lulu, Lee Sangmi, Lazzaro Douglas R, Aranda Jacob, Grant Maria B, Chaqour Brahim
From the Departments of Cell Biology.
Ophthalmology, and.
J Biol Chem. 2015 Sep 18;290(38):23264-81. doi: 10.1074/jbc.M115.646950. Epub 2015 Aug 4.
The response of the retina to ischemic insult typically leads to aberrant retinal neovascularization, a major cause of blindness. The epigenetic regulation of angiogenic gene expression by miRNAs provides new prospects for their therapeutic utility in retinal neovascularization. Here, we focus on miR-155, a microRNA functionally important in inflammation, which is of paramount importance in the pathogenesis of retinal neovascularization. Whereas constitutive miR-155-deficiency in mice results in mild vascular defects, forced expression of miR-155 causes endothelial hyperplasia and increases microglia count and activation. The mouse model of oxygen-induced retinopathy, which recapitulates ischemia-induced aberrant neovessel growth, is characterized by increased expression of miR-155 and localized areas of microglia activation. Interestingly, miR-155 deficiency in mice reduces microglial activation, curtails abnormal vessel growth, and allows for rapid normalization of the retinal vasculature following ischemic insult. miR-155 binds to the 3'-UTR and represses the expression of the CCN1 gene, which encodes an extracellular matrix-associated integrin-binding protein that both promotes physiological angiogenesis and harnesses growth factor-induced abnormal angiogenic responses. Single CCN1 deficiency or double CCN1 and miR-155 knock-out in mice causes retinal vascular malformations typical of faulty maturation, mimicking the vascular alterations of miR-155 gain of function. During development, the miR-155/CCN1 regulatory axis balances the proangiogenic and proinflammatory activities of microglia to allow for their function as guideposts for sprout fusion and anastomosis. Under ischemic conditions, dysregulated miR-155 and CCN1 expression increases the inflammatory load and microglial activation, prompting aberrant angiogenic responses. Thus, miR-155 functions in tandem with CCN1 to modulate inflammation-induced vascular homeostasis and repair.
视网膜对缺血性损伤的反应通常会导致异常的视网膜新生血管形成,这是失明的主要原因。微小RNA(miRNA)对血管生成基因表达的表观遗传调控为其在视网膜新生血管形成中的治疗应用提供了新的前景。在此,我们聚焦于miR-155,一种在炎症中功能重要的微小RNA,其在视网膜新生血管形成的发病机制中至关重要。虽然小鼠中组成型miR-155缺陷会导致轻度血管缺陷,但miR-155的强制表达会导致内皮细胞增生,并增加小胶质细胞数量和激活。氧诱导性视网膜病变的小鼠模型可重现缺血诱导的异常血管生长,其特征是miR-155表达增加和小胶质细胞激活的局部区域。有趣的是,小鼠中miR-155缺陷会减少小胶质细胞激活,抑制异常血管生长,并使缺血性损伤后视网膜血管系统迅速恢复正常。miR-155与3'-非翻译区(3'-UTR)结合并抑制CCN1基因的表达,该基因编码一种细胞外基质相关的整合素结合蛋白,其既能促进生理性血管生成,又能控制生长因子诱导的异常血管生成反应。小鼠中单一CCN1缺陷或CCN1和miR-155双敲除会导致典型的成熟缺陷性视网膜血管畸形,类似于miR-155功能获得性的血管改变。在发育过程中,miR-155/CCN1调控轴平衡小胶质细胞的促血管生成和促炎活性,使其能够作为芽融合和吻合的路标发挥作用。在缺血条件下,miR-155和CCN1表达失调会增加炎症负荷和小胶质细胞激活,引发异常的血管生成反应。因此,miR-155与CCN1协同作用,调节炎症诱导的血管稳态和修复。