Suppr超能文献

基于原子力显微镜对CCN1内皮特异性缺失小鼠视网膜微血管硬度的测量。

Atomic Force Microscopy-Based Measurements of Retinal Microvessel Stiffness in Mice with Endothelial-Specific Deletion of CCN1.

作者信息

Chaqour Brahim, Grant Maria B, Lau Lester F, Wang Biran, Urbanski Mateusz M, Melendez-Vasquez Carmen V

机构信息

Department of Ophthalmology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.

Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.

出版信息

Methods Mol Biol. 2023;2582:323-334. doi: 10.1007/978-1-0716-2744-0_22.

Abstract

Vascular stiffness is an independent predictor of human vascular diseases and is linked to ischemia, diabetes, high blood pressure, hyperlipidemia, and/or aging. Blood vessel stiffening increases owing to changes in the microscale architecture and/or content of extracellular, cytoskeletal, and nuclear matrix proteins. These alterations, while best appreciated in large blood vessels, also gradually occur in the microvasculature and play an important role in the initiation and progression of numerous microangiopathies including diabetic retinopathy. Although macroscopic measurements of arterial stiffness by pulse wave velocity are often used for clinical diagnosis, stiffness changes of intact microvessels and their causative factors have not been characterized. Herein, we describe the use of atomic force microscopy (AFM) to determine stiffness of mouse retinal capillaries and assess its regulation by the cellular communication network (CCN) 1, a stiffness-sensitive gene-encoded matricellular protein. AFM yields reproducible measurements of retinal capillary stiffness in lightly fixed freshly isolated retinal flat mounts. AFM measurements also show significant changes in compliance properties of the retinal microvasculature of mice with endothelial-specific deletion of CCN1, indicating that CCN1 expression, or lack thereof, affects the mechanical properties of microvascular cells in vivo. Thus, AFM has the force sensitivity and the spatial resolution necessary to measure the local modulus of retinal capillaries in situ and eventually to investigate microvascular compliance heterogeneities as key components of disease pathogenesis.

摘要

血管僵硬度是人类血管疾病的独立预测因子,与缺血、糖尿病、高血压、高脂血症和/或衰老有关。由于细胞外、细胞骨架和核基质蛋白的微观结构和/或含量发生变化,血管僵硬度增加。这些改变在大血管中最为明显,在微血管中也会逐渐发生,并在包括糖尿病视网膜病变在内的众多微血管病变的发生和发展中起重要作用。尽管通过脉搏波速度对动脉僵硬度进行宏观测量常用于临床诊断,但完整微血管的僵硬度变化及其致病因素尚未得到明确表征。在此,我们描述了使用原子力显微镜(AFM)来测定小鼠视网膜毛细血管的僵硬度,并评估细胞通讯网络(CCN)1对其的调节作用,CCN1是一种对僵硬度敏感的基因编码基质细胞蛋白。AFM可在轻度固定的新鲜分离视网膜铺片中对视网膜毛细血管僵硬度进行可重复测量。AFM测量还显示,CCN1内皮特异性缺失的小鼠视网膜微血管的顺应性特性有显著变化,表明CCN1的表达与否会影响体内微血管细胞的力学特性。因此,AFM具有原位测量视网膜毛细血管局部模量所需的力敏感性和空间分辨率,最终可研究微血管顺应性异质性作为疾病发病机制的关键组成部分。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验