Sudi Ismaila Yada, Shamsir Mohd Shahir, Jamaluddin Haryati, Wahab Roswanira Abdul, Huyop Fahrul
Department of Biotechnology and Medical Engineering, Faculty of Biosciences and Medical Engineering (FBME), Universiti Teknologi Malaysia , Johor Bahru , Johor , Malaysia.
Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia , Johor Bahru , Johor , Malaysia.
Biotechnol Biotechnol Equip. 2014 Sep 3;28(5):949-957. doi: 10.1080/13102818.2014.960663. Epub 2014 Oct 30.
The D-2-haloacid dehalogenase of D-specific dehalogenase (DehD) from sp. RC1 catalyses the hydrolytic dehalogenation of D-haloalkanoic acids, inverting the substrate-product configuration and thereby forming the corresponding L-hydroxyalkanoic acids. Our investigations were focused on DehD mutants: R134A and Y135A. We examined the possible interactions between these mutants with haloalkanoic acids and characterized the key catalytic residues in the wild-type dehalogenase, to design dehalogenase enzyme(s) with improved potential for dehalogenation of a wider range of substrates. Three natural substrates of wild-type DehD, specifically, monochloroacetate, monobromoacetate and D,L-2,3-dichloropropionate, and eight other non-natural haloalkanoic acids substrates of DehD, namely, L-2-chloropropionate; L-2-bromopropionate; 2,2-dichloropropionate; dichloroacetate; dibromoacetate; trichloroacetate; tribromoacetate; and 3-chloropropionate, were docked into the active site of the DehD mutants R134A and Y135A, which produced altered catalytic functions. The mutants interacted strongly with substrates that wild-type DehD does not interact with or degrade. The interaction was particularly enhanced with 3-chloropropionate, in addition to monobromoacetate, monochloroacetate and D,L-2,3-dichloropropionate. In summary, DehD variants R134A and Y135A demonstrated increased propensity for binding haloalkanoic acid and were non-stereospecific towards halogenated substrates. The improved characteristics in these mutants suggest that their functionality could be further exploited and harnessed in bioremediations and biotechnological applications.
来自菌株RC1的D-特异性脱卤酶(DehD)的D-2-卤代酸脱卤酶催化D-卤代链烷酸的水解脱卤反应,使底物-产物构型发生翻转,从而形成相应的L-羟基链烷酸。我们的研究集中在DehD突变体:R134A和Y135A。我们研究了这些突变体与卤代链烷酸之间可能的相互作用,并对野生型脱卤酶中的关键催化残基进行了表征,以设计出对更广泛底物具有更高脱卤潜力的脱卤酶。野生型DehD的三种天然底物,即一氯乙酸、一溴乙酸和D,L-2,3-二氯丙酸,以及DehD的其他八种非天然卤代链烷酸底物,即L-2-氯丙酸;L-2-溴丙酸;2,2-二氯丙酸;二氯乙酸;二溴乙酸;三氯乙酸;三溴乙酸;和3-氯丙酸,被对接至DehD突变体R134A和Y135A的活性位点,这导致了催化功能的改变。这些突变体与野生型DehD不相互作用或不降解的底物有强烈相互作用。除了一溴乙酸、一氯乙酸和D,L-2,3-二氯丙酸外,与3-氯丙酸的相互作用尤其增强。总之,DehD变体R134A和Y135A表现出与卤代链烷酸结合的倾向增加,并且对卤化底物无立体特异性。这些突变体的改进特性表明,它们的功能可在生物修复和生物技术应用中得到进一步开发和利用。