Smith Clyde A, Antunes Nuno Tiago, Stewart Nichole K, Frase Hilary, Toth Marta, Kantardjieff Katherine A, Vakulenko Sergei
†Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California 94025, United States.
‡Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.
ACS Chem Biol. 2015 Aug 21;10(8):1791-6. doi: 10.1021/acschembio.5b00090. Epub 2015 Jun 12.
Class D β-lactamases of Acinetobacter baumannii are enzymes of the utmost clinical importance, producing resistance to last resort carbapenem antibiotics. Although the OXA-51-like enzymes constitute the largest family of class D β-lactamases, they are poorly studied and their importance in conferring carbapenem resistance is controversial. We present the detailed microbiological, kinetic, and structural characterization of the eponymous OXA-51 β-lactamase. Kinetic studies show that OXA-51 has low catalytic efficiency for carbapenems, primarily due to the low affinity of the enzyme for these substrates. Structural studies demonstrate that this low affinity results from the obstruction of the enzyme active site by the side chain of Trp222, which presents a transient steric barrier to an incoming carbapenem substrate. The Trp222Met substitution relieves this steric hindrance and elevates the affinity of the mutant enzyme for carbapenems by 10-fold, significantly increasing the levels of resistance to these antibiotics. The ability of OXA-51 to evolve into a robust carbapenemase as the result of a single amino acid substitution may, in the near future, elevate the ubiquitous enzymes of the OXA-51 family to the status of the most deleterious A. baumannii carbapenemases, with dire clinical consequences.
鲍曼不动杆菌的D类β-内酰胺酶是具有极其重要临床意义的酶,可产生对作为最后手段的碳青霉烯类抗生素的耐药性。尽管OXA-51样酶构成了D类β-内酰胺酶的最大家族,但对它们的研究较少,并且它们在赋予碳青霉烯耐药性方面的重要性存在争议。我们展示了同名的OXA-51β-内酰胺酶详细的微生物学、动力学和结构特征。动力学研究表明,OXA-51对碳青霉烯类药物的催化效率较低,这主要是由于该酶对这些底物的亲和力较低。结构研究表明,这种低亲和力是由Trp222的侧链对酶活性位点的阻碍导致的,该侧链对进入的碳青霉烯底物形成了一个瞬时空间屏障。Trp222Met取代消除了这种空间位阻,并使突变酶对碳青霉烯类药物的亲和力提高了10倍,显著增加了对这些抗生素的耐药水平。由于单个氨基酸取代,OXA-51有可能演变成一种强大的碳青霉烯酶,在不久的将来,这可能会使无处不在的OXA-51家族酶上升到最具危害性的鲍曼不动杆菌碳青霉烯酶的地位,从而产生严重的临床后果。