Golowasch Jorge
Federated Department of Biological Sciences, at the New Jersey Institute of Technology and Rutgers University, in Newark.
Bioscience. 2014 Jul;64(7):570-580. doi: 10.1093/biosci/biu070.
Identified neurons in different animals express ionic currents at highly variable levels (population variability). If neuronal identity is associated with stereotypical function, as is the case in genetically identical neurons or in unambiguously identified individual neurons, this variability poses a conundrum: How is activity the same if the components that generate it-ionic current levels-are different? In some cases, ionic current variability across similar neurons generates an output gradient. However, many neurons produce very similar output activity, despite substantial variability in ionic conductances. It appears that, in many such cells, conductance levels of one ionic current vary in proportion to the conductance levels of another current. As a result, in a population of neurons, these conductances appear to be correlated. Here, I review theoretical and experimental work that suggests that neuronal ionic current correlation can reduce the global ionic current variability and can contribute to functional stability.
在不同动物中识别出的神经元以高度可变的水平表达离子电流(群体变异性)。如果神经元身份与刻板功能相关联,就像在基因相同的神经元或明确识别的单个神经元中那样,这种变异性就会带来一个难题:如果产生活动的成分——离子电流水平——不同,那么活动怎么会相同呢?在某些情况下,相似神经元之间的离子电流变异性会产生输出梯度。然而,尽管离子电导存在很大变异性,但许多神经元产生的输出活动非常相似。似乎在许多这样的细胞中,一种离子电流的电导水平与另一种电流的电导水平成比例变化。结果,在一群神经元中,这些电导似乎是相关的。在此,我回顾了理论和实验工作,这些工作表明神经元离子电流相关性可以降低全局离子电流变异性,并有助于功能稳定性。