Physics Department, Northeastern University, Boston, United states.
Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, United States.
Elife. 2018 Sep 25;7:e36717. doi: 10.7554/eLife.36717.
Conductances of ion channels and transporters controlling cardiac excitation may vary in a population of subjects with different cardiac gene expression patterns. However, the amount of variability and its origin are not quantitatively known. We propose a new conceptual approach to predict this variability that consists of finding combinations of conductances generating a normal intracellular Ca transient without any constraint on the action potential. Furthermore, we validate experimentally its predictions using the Hybrid Mouse Diversity Panel, a model system of genetically diverse mouse strains that allows us to quantify inter-subject versus intra-subject variability. The method predicts that conductances of inward Ca and outward K currents compensate each other to generate a normal Ca transient in good quantitative agreement with current measurements in ventricular myocytes from hearts of different isogenic strains. Our results suggest that a feedback mechanism sensing the aggregate Ca transient of the heart suffices to regulate ionic conductances.
控制心脏兴奋的离子通道和转运体的电导率在具有不同心脏基因表达模式的受试者群体中可能会有所不同。然而,其可变性的程度及其来源尚不清楚。我们提出了一种新的概念方法来预测这种可变性,该方法包括寻找在没有任何对动作电位限制的情况下产生正常细胞内 Ca 瞬变的电导组合。此外,我们使用杂交鼠多样性面板(Hybrid Mouse Diversity Panel)对其预测进行了实验验证,该模型系统由遗传多样化的小鼠品系组成,使我们能够量化不同个体之间和个体内部的变异性。该方法预测,内向 Ca 和外向 K 电流的电导率会相互补偿,以产生与不同同基因系心脏心室肌细胞中电流测量值具有良好定量一致性的正常 Ca 瞬变。我们的研究结果表明,一种能够感知心脏总 Ca 瞬变的反馈机制足以调节离子电导率。