Zhang Yudong, Wang Shuihua
School of Computer Science and Technology, Nanjing Normal University , Nanjing, Jiangsu , China ; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing , Nanjing, Jiangsu , China.
School of Electronic Science and Engineering, Nanjing University , Nanjing, Jiangsu , China ; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing , Nanjing, Jiangsu , China.
PeerJ. 2015 Sep 17;3:e1251. doi: 10.7717/peerj.1251. eCollection 2015.
Aim. Alzheimer's disease (AD) is a chronic neurodegenerative disease. Recently, computer scientists have developed various methods for early detection based on computer vision and machine learning techniques. Method. In this study, we proposed a novel AD detection method by displacement field (DF) estimation between a normal brain and an AD brain. The DF was treated as the AD-related features, reduced by principal component analysis (PCA), and finally fed into three classifiers: support vector machine (SVM), generalized eigenvalue proximal SVM (GEPSVM), and twin SVM (TSVM). The 10-fold cross validation repeated 50 times. Results. The results showed the "DF + PCA + TSVM" achieved the accuracy of 92.75 ± 1.77, sensitivity of 90.56 ± 1.15, specificity of 93.37 ± 2.05, and precision of 79.61 ± 2.21. This result is better than or comparable with not only the other proposed two methods, but also ten state-of-the-art methods. Besides, our method discovers the AD is related to following brain regions disclosed in recent publications: Angular Gyrus, Anterior Cingulate, Cingulate Gyrus, Culmen, Cuneus, Fusiform Gyrus, Inferior Frontal Gyrus, Inferior Occipital Gyrus, Inferior Parietal Lobule, Inferior Semi-Lunar Lobule, Inferior Temporal Gyrus, Insula, Lateral Ventricle, Lingual Gyrus, Medial Frontal Gyrus, Middle Frontal Gyrus, Middle Occipital Gyrus, Middle Temporal Gyrus, Paracentral Lobule, Parahippocampal Gyrus, Postcentral Gyrus, Posterior Cingulate, Precentral Gyrus, Precuneus, Sub-Gyral, Superior Parietal Lobule, Superior Temporal Gyrus, Supramarginal Gyrus, and Uncus. Conclusion. The displacement filed is effective in detection of AD and related brain-regions.
目的。阿尔茨海默病(AD)是一种慢性神经退行性疾病。最近,计算机科学家基于计算机视觉和机器学习技术开发了各种早期检测方法。方法。在本研究中,我们提出了一种通过估计正常大脑和AD大脑之间的位移场(DF)来进行AD检测的新方法。将DF视为与AD相关的特征,通过主成分分析(PCA)进行降维,最后输入到三个分类器中:支持向量机(SVM)、广义特征值近端支持向量机(GEPSVM)和孪生支持向量机(TSVM)进行10折交叉验证,并重复50次。结果。结果表明“DF + PCA + TSVM”方法的准确率达到92.75±1.77,灵敏度为90.56±1.15,特异性为93.37±2.05,精确率为79.61±2.21。该结果不仅优于或可与其他两种提出的方法相媲美,还优于十种现有最先进的方法。此外,我们的方法发现AD与近期出版物中披露如下大脑区域有关:角回、前扣带回、扣带回、山顶、楔叶、梭状回、额下回、枕下回、顶下小叶、颞下回半月小叶、颞下回、脑岛、侧脑室、舌回、额内侧回、额中回、枕中回、颞中回、中央旁小叶、海马旁回、中央后回、后扣带回、中央前回、楔前叶、回下、顶上小叶、颞上回、缘上回和钩回。结论。位移场在AD及相关脑区的检测中是有效的。