†Microelectronics Research Center and Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758, United States.
‡SEMATECH, 257 Fuller Rd #2200, Albany, New York-12203, United States.
Nano Lett. 2015 Jul 8;15(7):4329-36. doi: 10.1021/acs.nanolett.5b00314. Epub 2015 Jun 26.
To reduce Schottky-barrier-induced contact and access resistance, and the impact of charged impurity and phonon scattering on mobility in devices based on 2D transition metal dichalcogenides (TMDs), considerable effort has been put into exploring various doping techniques and dielectric engineering using high-κ oxides, respectively. The goal of this work is to demonstrate a high-κ dielectric that serves as an effective n-type charge transfer dopant on monolayer (ML) molybdenum disulfide (MoS2). Utilizing amorphous titanium suboxide (ATO) as the "high-κ dopant", we achieved a contact resistance of ∼180 Ω·μm that is the lowest reported value for ML MoS2. An ON current as high as 240 μA/μm and field effect mobility as high as 83 cm(2)/V-s were realized using this doping technique. Moreover, intrinsic mobility as high as 102 cm(2)/V-s at 300 K and 501 cm(2)/V-s at 77 K were achieved after ATO encapsulation that are among the highest mobility values reported on ML MoS2. We also analyzed the doping effect of ATO films on ML MoS2, a phenomenon that is absent when stoichiometric TiO2 is used, using ab initio density functional theory (DFT) calculations that shows excellent agreement with our experimental findings. On the basis of the interfacial-oxygen-vacancy mediated doping as seen in the case of high-κ ATO-ML MoS2, we propose a mechanism for the mobility enhancement effect observed in TMD-based devices after encapsulation in a high-κ dielectric environment.
为了降低肖特基势垒引起的接触和接入电阻,以及受主杂质和声子散射对二维过渡金属二硫化物(TMD)器件迁移率的影响,人们分别在探索各种掺杂技术和使用高κ氧化物的介电工程方面投入了大量的努力。这项工作的目的是展示一种高κ介电材料,作为单层(ML)二硫化钼(MoS2)的有效 n 型电荷转移掺杂剂。我们利用非晶态氧化钛亚氧化物(ATO)作为“高κ掺杂剂”,实现了约 180 Ω·μm 的接触电阻,这是报道的 ML MoS2 的最低值。利用这种掺杂技术,实现了高达 240 μA/μm 的导通电流和高达 83 cm²/V-s 的场效应迁移率。此外,在 ATO 封装后,实现了高达 102 cm²/V-s 的本征迁移率(在 300 K 时)和 501 cm²/V-s(在 77 K 时),这是在 ML MoS2 上报道的最高迁移率值之一。我们还使用第一性原理密度泛函理论(DFT)计算分析了 ATO 薄膜对 ML MoS2 的掺杂效应,当使用化学计量的 TiO2 时,这种现象不存在,这与我们的实验结果非常吻合。基于高κ ATO-ML MoS2 中观察到的界面氧空位介导掺杂,我们提出了一种在高κ介电环境中封装后 TMD 器件中观察到的迁移率增强效应的机制。