Knobloch Theresia, Selberherr Siegfried, Grasser Tibor
Institute for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, 1040 Vienna, Austria.
Nanomaterials (Basel). 2022 Oct 11;12(20):3548. doi: 10.3390/nano12203548.
For ultra-scaled technology nodes at channel lengths below 12 nm, two-dimensional (2D) materials are a potential replacement for silicon since even atomically thin 2D semiconductors can maintain sizable mobilities and provide enhanced gate control in a stacked channel nanosheet transistor geometry. While theoretical projections and available experimental prototypes indicate great potential for 2D field effect transistors (FETs), several major challenges must be solved to realize CMOS logic circuits based on 2D materials at the wafer scale. This review discusses the most critical issues and benchmarks against the targets outlined for the 0.7 nm node in the International Roadmap for Devices and Systems scheduled for 2034. These issues are grouped into four areas; device scaling, the formation of low-resistive contacts to 2D semiconductors, gate stack design, and wafer-scale process integration. Here, we summarize recent developments in these areas and identify the most important future research questions which will have to be solved to allow for industrial adaptation of the 2D technology.
对于沟道长度低于12纳米的超缩放技术节点,二维(2D)材料是硅的潜在替代品,因为即使是原子级薄的二维半导体也能保持可观的迁移率,并在堆叠沟道纳米片晶体管结构中提供增强的栅极控制。虽然理论预测和现有的实验原型表明二维场效应晶体管(FET)具有巨大潜力,但要在晶圆规模上实现基于二维材料的CMOS逻辑电路,还必须解决几个主要挑战。本综述讨论了最关键的问题,并对照《2034年国际设备与系统路线图》中为0.7纳米节点设定的目标进行了基准测试。这些问题分为四个领域:器件缩放、与二维半导体形成低电阻接触、栅极堆叠设计和晶圆级工艺集成。在此,我们总结了这些领域的最新进展,并确定了未来最重要的研究问题,这些问题必须得到解决,才能使二维技术实现工业应用。