Department of Biomedical Engineering, Shahed University, Tehran, Iran.
Comput Biol Med. 2015 Sep;64:1-11. doi: 10.1016/j.compbiomed.2015.06.001. Epub 2015 Jun 12.
In this paper, a subject transfer framework is proposed for the classification of Electroencephalogram (EEG) signals in brain-computer interfaces (BCIs). This study introduces a modification of Common Spatial Pattern (CSP) for subject transfer BCIs, where similar characteristics are considered to transfer knowledge from other subjects׳ data. With this aim, we proposed a new approach based on Composite Local Temporal Correlation CSP, namely Composite LTCCSP with selected subjects, which considers the similarity between subjects using Frobenius distance. The performance of the proposed method is compared with different methods like traditional CSP, Composite CSP, LTCCSP and Composite LTCCSP. Experimental results have shown that our proposed method has increased the performance compared to all these different methods. Furthermore, our results suggest that it is worth emphasizing the data of subjects with similar characteristics in a subject transfer diagram. The suggested framework, as demonstrated by experimental results, can obtain a positive knowledge transfer for enhancing the performance of BCIs.
本文提出了一种用于脑机接口(BCI)中脑电图(EEG)信号分类的主体转移框架。本研究介绍了一种用于主体转移 BCI 的共空间模式(CSP)的改进方法,其中考虑了相似的特征以从其他主体的数据中转移知识。为此,我们提出了一种基于复合局部时间相关 CSP 的新方法,即基于所选主体的复合 LTCCSP,该方法使用 Frobenius 距离考虑主体之间的相似性。与传统 CSP、复合 CSP、LTCCSP 和复合 LTCCSP 等不同方法相比,对所提出方法的性能进行了比较。实验结果表明,与所有这些不同方法相比,我们提出的方法提高了性能。此外,我们的结果表明,在主体转移图中强调具有相似特征的主体的数据是值得的。实验结果表明,所提出的框架可以通过积极的知识转移来提高 BCI 的性能。