Suppr超能文献

具有脑电信号受试者间转移的正则化公共空间模式

Regularized common spatial patterns with subject-to-subject transfer of EEG signals.

作者信息

Cheng Minmin, Lu Zuhong, Wang Haixian

机构信息

Key Laboratory of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, 210096 Jiangsu China.

出版信息

Cogn Neurodyn. 2017 Apr;11(2):173-181. doi: 10.1007/s11571-016-9417-x. Epub 2016 Nov 5.

Abstract

In the context of brain-computer interface (BCI) system, the common spatial patterns (CSP) method has been used to extract discriminative spatial filters for the classification of electroencephalogram (EEG) signals. However, the classification performance of CSP typically deteriorates when a few training samples are collected from a new BCI user. In this paper, we propose an approach that maintains or improves the recognition accuracy of the system with only a small size of training data set. The proposed approach is formulated by regularizing the classical CSP technique with the strategy of transfer learning. Specifically, we incorporate into the CSP analysis inter-subject information involving the same task, by minimizing the difference between the inter-subject features. Experimental results on two data sets from BCI competitions show that the proposed approach greatly improves the classification performance over that of the conventional CSP method; the transformed variant proved to be successful in almost every case, based on a small number of available training samples.

摘要

在脑机接口(BCI)系统的背景下,共同空间模式(CSP)方法已被用于提取用于脑电图(EEG)信号分类的判别性空间滤波器。然而,当从新的BCI用户收集少量训练样本时,CSP的分类性能通常会下降。在本文中,我们提出了一种方法,该方法仅使用小尺寸训练数据集就能维持或提高系统的识别准确率。所提出的方法是通过使用迁移学习策略对经典CSP技术进行正则化来制定的。具体而言,我们通过最小化受试者间特征之间的差异,将涉及相同任务的受试者间信息纳入CSP分析。来自BCI竞赛的两个数据集的实验结果表明,所提出的方法比传统CSP方法大大提高了分类性能;基于少量可用训练样本,变换后的变体在几乎每种情况下都被证明是成功的。

相似文献

引用本文的文献

2
Time-frequency-space transformer EEG decoding for spinal cord injury.用于脊髓损伤的时频空间变压器脑电图解码
Cogn Neurodyn. 2024 Dec;18(6):3491-3506. doi: 10.1007/s11571-024-10135-8. Epub 2024 Jun 18.
6
Empirical comparison of deep learning methods for EEG decoding.脑电图解码深度学习方法的实证比较。
Front Neurosci. 2023 Jan 10;16:1003984. doi: 10.3389/fnins.2022.1003984. eCollection 2022.

本文引用的文献

2
Regularized Filters for L1-Norm-Based Common Spatial Patterns.用于基于L1范数的公共空间模式的正则化滤波器
IEEE Trans Neural Syst Rehabil Eng. 2016 Feb;24(2):201-11. doi: 10.1109/TNSRE.2015.2474141. Epub 2015 Aug 28.
4
Domain Transfer Learning for MCI Conversion Prediction.用于轻度认知障碍转化预测的域迁移学习
IEEE Trans Biomed Eng. 2015 Jul;62(7):1805-1817. doi: 10.1109/TBME.2015.2404809. Epub 2015 Mar 2.
5
Transfer learning for visual categorization: a survey.迁移学习在视觉分类中的应用综述。
IEEE Trans Neural Netw Learn Syst. 2015 May;26(5):1019-34. doi: 10.1109/TNNLS.2014.2330900. Epub 2014 Jul 1.
7
Transferring subspaces between subjects in brain--computer interfacing.在脑机接口中在受试者之间转移子空间。
IEEE Trans Biomed Eng. 2013 Aug;60(8):2289-98. doi: 10.1109/TBME.2013.2253608. Epub 2013 Mar 20.
10
Stationary common spatial patterns for brain-computer interfacing.用于脑机接口的静态公共空间模式。
J Neural Eng. 2012 Apr;9(2):026013. doi: 10.1088/1741-2560/9/2/026013. Epub 2012 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验