Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore.
IEEE Trans Biomed Eng. 2010 Dec;57(12):2936-46. doi: 10.1109/TBME.2010.2082540. Epub 2010 Sep 30.
Common spatial pattern (CSP) is a popular algorithm for classifying electroencephalogram (EEG) signals in the context of brain-computer interfaces (BCIs). This paper presents a regularization and aggregation technique for CSP in a small-sample setting (SSS). Conventional CSP is based on a sample-based covariance-matrix estimation. Hence, its performance in EEG classification deteriorates if the number of training samples is small. To address this concern, a regularized CSP (R-CSP) algorithm is proposed, where the covariance-matrix estimation is regularized by two parameters to lower the estimation variance while reducing the estimation bias. To tackle the problem of regularization parameter determination, R-CSP with aggregation (R-CSP-A) is further proposed, where a number of R-CSPs are aggregated to give an ensemble-based solution. The proposed algorithm is evaluated on data set IVa of BCI Competition III against four other competing algorithms. Experiments show that R-CSP-A significantly outperforms the other methods in average classification performance in three sets of experiments across various testing scenarios, with particular superiority in SSS.
共空间模式(CSP)是一种在脑机接口(BCI)中用于分类脑电图(EEG)信号的流行算法。本文提出了一种在小样本设置(SSS)下对 CSP 进行正则化和聚合的技术。传统的 CSP 基于基于样本的协方差矩阵估计。因此,如果训练样本数量较少,其 EEG 分类性能会下降。为了解决这个问题,提出了一种正则化 CSP(R-CSP)算法,其中通过两个参数对协方差矩阵估计进行正则化,以降低估计方差,同时减少估计偏差。为了解决正则化参数确定的问题,进一步提出了具有聚合的 R-CSP(R-CSP-A),其中聚合了多个 R-CSP 以提供基于集成的解决方案。所提出的算法在 BCI 竞赛 III 的数据集 IVa 上针对其他四个竞争算法进行了评估。实验表明,在跨各种测试场景的三组实验中,R-CSP-A 在平均分类性能方面明显优于其他方法,在 SSS 中具有特别的优势。