Suppr超能文献

用于治疗脊髓损伤的抗抑制分子的持续双药递送

Sustained dual drug delivery of anti-inhibitory molecules for treatment of spinal cord injury.

作者信息

Wilems Thomas S, Sakiyama-Elbert Shelly E

机构信息

Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, United States.

Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, United States.

出版信息

J Control Release. 2015 Sep 10;213:103-111. doi: 10.1016/j.jconrel.2015.06.031. Epub 2015 Jun 27.

Abstract

Myelin-associated inhibitors (MAIs) and chondroitin sulfate proteoglycans (CSPGs) are major contributors to axon growth inhibition following spinal cord injury and limit functional recovery. The NEP1-40 peptide competitively binds the Nogo receptor and partially blocks inhibition from MAIs, while chondroitinase ABC (ChABC) enzymatically digests CSPGs, which are upregulated at the site of injury. In vitro studies showed that the combination of ChABC and NEP1-40 increased neurite extension compared to either treatment alone when dissociated embryonic dorsal root ganglia were seeded onto inhibitory substrates containing both MAIs and CSPGs. Furthermore, the ability to provide sustained delivery of biologically active ChABC and NEP1-40 from biomaterial scaffolds was achieved by loading ChABC into lipid microtubes and NEP1-40 into poly (lactic-co-glycolic acid) (PLGA) microspheres, obviating the need for invasive intrathecal pumps or catheters. Fibrin scaffolds embedded with the drug delivery systems (PLGA microspheres and lipid microtubes) were capable of releasing active ChABC for up to one week and active NEP1-40 for over two weeks in vitro. In addition, the loaded drug delivery systems in fibrin scaffolds decreased CSPG deposition and development of a glial scar, while also increasing axon growth after spinal cord injury in vivo. Therefore, the sustained, local delivery of ChABC and NEP1-40 within the injured spinal cord may block both myelin and CSPG-associated inhibition and allow for improved axon growth.

摘要

髓磷脂相关抑制剂(MAIs)和硫酸软骨素蛋白聚糖(CSPGs)是脊髓损伤后轴突生长抑制的主要促成因素,并限制功能恢复。NEP1-40肽竞争性结合Nogo受体并部分阻断MAIs的抑制作用,而软骨素酶ABC(ChABC)可酶解在损伤部位上调的CSPGs。体外研究表明,当将解离的胚胎背根神经节接种到含有MAIs和CSPGs的抑制性底物上时,与单独使用任何一种处理相比,ChABC和NEP1-40联合使用可增加神经突延伸。此外,通过将ChABC加载到脂质微管中并将NEP1-40加载到聚乳酸-羟基乙酸共聚物(PLGA)微球中,实现了从生物材料支架持续递送生物活性ChABC和NEP1-40的能力,从而无需侵入性鞘内泵或导管。嵌入药物递送系统(PLGA微球和脂质微管)的纤维蛋白支架在体外能够释放活性ChABC长达一周,释放活性NEP1-40超过两周。此外,纤维蛋白支架中加载的药物递送系统减少了CSPG沉积和胶质瘢痕的形成,同时还增加了体内脊髓损伤后的轴突生长。因此,在损伤的脊髓内持续、局部递送ChABC和NEP1-40可能会阻断髓磷脂和CSPG相关的抑制作用,并促进轴突生长改善。

相似文献

1
Sustained dual drug delivery of anti-inhibitory molecules for treatment of spinal cord injury.
J Control Release. 2015 Sep 10;213:103-111. doi: 10.1016/j.jconrel.2015.06.031. Epub 2015 Jun 27.
3
Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury.
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3340-5. doi: 10.1073/pnas.0905437106. Epub 2009 Nov 2.
4
The effects of combining chondroitinase ABC and NEP1-40 on the corticospinal axon growth in organotypic co-cultures.
Neurosci Lett. 2010 May 26;476(1):14-7. doi: 10.1016/j.neulet.2010.03.049. Epub 2010 Mar 25.
5
Controlled release of chondroitinase ABC from fibrin gel reduces the level of inhibitory glycosaminoglycan chains in lesioned spinal cord.
J Control Release. 2010 Oct 1;147(1):24-9. doi: 10.1016/j.jconrel.2010.06.026. Epub 2010 Jul 8.
7
10
Self-assembling peptide hydrogels for the stabilization and sustained release of active Chondroitinase ABC in vitro and in spinal cord injuries.
J Control Release. 2021 Feb 10;330:1208-1219. doi: 10.1016/j.jconrel.2020.11.027. Epub 2020 Nov 20.

引用本文的文献

1
Functional biomaterials for modulating the dysfunctional pathological microenvironment of spinal cord injury.
Bioact Mater. 2024 May 30;39:521-543. doi: 10.1016/j.bioactmat.2024.04.015. eCollection 2024 Sep.
2
Synthesis and evaluation of nanosystem containing chondroitinase ABCI based on hydroxyapatite.
AMB Express. 2024 Feb 14;14(1):23. doi: 10.1186/s13568-024-01677-5.
4
Advances in Fibrin-Based Materials in Wound Repair: A Review.
Molecules. 2022 Jul 14;27(14):4504. doi: 10.3390/molecules27144504.
7
Sustained intrathecal delivery of amphotericin B using an injectable and biodegradable thermogel.
Drug Deliv. 2021 Dec;28(1):499-509. doi: 10.1080/10717544.2021.1892242.
8
Hydrogel-based local drug delivery strategies for spinal cord repair.
Neural Regen Res. 2021 Feb;16(2):247-253. doi: 10.4103/1673-5374.290882.
9
Application of fibrin-based hydrogels for nerve protection and regeneration after spinal cord injury.
J Biol Eng. 2020 Aug 3;14:22. doi: 10.1186/s13036-020-00244-3. eCollection 2020.

本文引用的文献

1
Impact of treatment duration and lesion size on effectiveness of chondroitinase treatment post-SCI.
Exp Neurol. 2015 May;267:64-77. doi: 10.1016/j.expneurol.2015.02.028. Epub 2015 Feb 26.
4
Sustained Delivery of Chondroitinase ABC from Hydrogel System.
J Funct Biomater. 2012 Mar 19;3(1):199-208. doi: 10.3390/jfb3010199.
7
Affinity-based release of chondroitinase ABC from a modified methylcellulose hydrogel.
J Control Release. 2013 Oct 10;171(1):11-6. doi: 10.1016/j.jconrel.2013.06.029. Epub 2013 Jul 2.
8
Nerve regeneration restores supraspinal control of bladder function after complete spinal cord injury.
J Neurosci. 2013 Jun 26;33(26):10591-606. doi: 10.1523/JNEUROSCI.1116-12.2013.
10
Spinal cord injury facts and figures at a glance.
J Spinal Cord Med. 2012 Nov;35(6):480-1. doi: 10.1179/1079026812Z.000000000124.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验