Suppr超能文献

诺丁汉组织学分级参数和诺丁汉预后指数在犬乳腺癌中的价值。

Value of the Nottingham Histological Grading Parameters and Nottingham Prognostic Index in Canine Mammary Carcinoma.

作者信息

Santos Marta, Correia-Gomes Carla, Marcos Ricardo, Santos Andreia, De Matos Augusto, Lopes Carlos, Dias-Pereira Patrícia

机构信息

Department of Microscopy, Institute of Biomedical Sciences Abel Salazar, ICBAS-UPorto, University of Porto, Porto, Portugal.

Epidemiology Research Unit, Future Farming Systems, Scotland's Rural College, Inverness, U.K.

出版信息

Anticancer Res. 2015 Jul;35(7):4219-27.

Abstract

BACKGROUND/AIM: In the past decade, the human Nottingham histological grade (NHG) has been applied to canine mammary carcinomas (CMC). The Nottingham Prognostic Index (NPI) enables identification of more aggressive human breast cancer. The prognostic value of grading parameters and NPI has never been detailed in CMC. The aim of the present study was to assess the prognostic value of NHG, its parameters and NPI.

MATERIALS AND METHODS

Univariable and multivariable analyses were used to assess the prognostic value of NHG, its parameters and NPI in a cohort of 59 dogs with CMC.

RESULTS

Short disease-free interval and overall survival were associated with higher NHG, particularly of grade III. Only high nuclear pleomorphism score was significantly associated with poor survival. NPI exhibited a strong predictive value for disease progression.

CONCLUSION

NHG, nuclear pleomorphism and NPI have prognostic value in CMC. Nuclear pleomorphism is an independent prognostic factor. Evaluation of nuclear pleomorphism should be included in routine pathology reports.

摘要

背景/目的:在过去十年中,人类诺丁汉组织学分级(NHG)已应用于犬乳腺癌(CMC)。诺丁汉预后指数(NPI)有助于识别侵袭性更强的人类乳腺癌。分级参数和NPI在CMC中的预后价值从未有过详细阐述。本研究的目的是评估NHG、其参数及NPI的预后价值。

材料与方法

采用单变量和多变量分析评估NHG、其参数及NPI在59只患有CMC的犬队列中的预后价值。

结果

较短的无病间期和总生存期与较高的NHG相关,尤其是III级。只有高核异型性评分与较差的生存期显著相关。NPI对疾病进展具有很强的预测价值。

结论

NHG、核异型性和NPI在CMC中具有预后价值。核异型性是一个独立的预后因素。核异型性评估应纳入常规病理报告中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验