Suppr超能文献

从大量视网膜神经元群体中高精度解码动态运动

High Accuracy Decoding of Dynamical Motion from a Large Retinal Population.

作者信息

Marre Olivier, Botella-Soler Vicente, Simmons Kristina D, Mora Thierry, Tkačik Gašper, Berry Michael J

机构信息

Department of Molecular Biology and Neuroscience Institute, Princeton University, Princeton, United States of America; Institut de la Vision, INSERM UMRS 968, UPMC UM 80, CNRS UMR 7210, Paris, France.

Institute of Science and Technology Austria, Klosterneuburg, Austria.

出版信息

PLoS Comput Biol. 2015 Jul 1;11(7):e1004304. doi: 10.1371/journal.pcbi.1004304. eCollection 2015 Jul.

Abstract

Motion tracking is a challenge the visual system has to solve by reading out the retinal population. It is still unclear how the information from different neurons can be combined together to estimate the position of an object. Here we recorded a large population of ganglion cells in a dense patch of salamander and guinea pig retinas while displaying a bar moving diffusively. We show that the bar's position can be reconstructed from retinal activity with a precision in the hyperacuity regime using a linear decoder acting on 100+ cells. We then took advantage of this unprecedented precision to explore the spatial structure of the retina's population code. The classical view would have suggested that the firing rates of the cells form a moving hill of activity tracking the bar's position. Instead, we found that most ganglion cells in the salamander fired sparsely and idiosyncratically, so that their neural image did not track the bar. Furthermore, ganglion cell activity spanned an area much larger than predicted by their receptive fields, with cells coding for motion far in their surround. As a result, population redundancy was high, and we could find multiple, disjoint subsets of neurons that encoded the trajectory with high precision. This organization allows for diverse collections of ganglion cells to represent high-accuracy motion information in a form easily read out by downstream neural circuits.

摘要

运动追踪是视觉系统通过读取视网膜神经群体必须解决的一个挑战。目前仍不清楚来自不同神经元的信息如何组合在一起以估计物体的位置。在这里,我们在蝾螈和豚鼠视网膜的密集区域记录了大量神经节细胞,同时展示了一个扩散移动的光条。我们表明,使用作用于100多个细胞的线性解码器,可以在超敏锐度范围内从视网膜活动中精确重建光条的位置。然后,我们利用这一前所未有的精度来探索视网膜群体编码的空间结构。传统观点可能会认为,细胞的放电率形成一个跟踪光条位置的移动活动峰。相反,我们发现蝾螈中的大多数神经节细胞放电稀疏且特异,因此它们的神经图像并不跟踪光条。此外,神经节细胞的活动跨越的区域比其感受野预测的要大得多,周围的细胞也对远处的运动进行编码。结果,群体冗余度很高,我们可以找到多个不相交的神经元子集,它们能高精度地编码轨迹。这种组织方式允许不同的神经节细胞集合以一种易于下游神经回路读取的形式来表示高精度的运动信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1777/4489022/aad776fad9ae/pcbi.1004304.g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验